Standard Base Assembly: Code Decoded

At Notre Dame, the linemen are controlled either via XBee linked to an Arduino Uno R3
microcontroller connected to Xbox controllers, or via BlueTooth connected to a wireless PS4
controller. The drive stack as a whole consists of the Arduino, the screw shield, the XBee shield, and
the XBee chip. The controller stack consists of the Arduino, the USB host shield, the XBee shield, and
the XBee chip.

When using a new Arduino Uno that hasn’t been programmed before (or if you don’t know if
the EEPROM was ever previously cleared), you must clear its EEPROM in order to use the Notre Dame
code. Upload the eeprom_setup program to the Arduino Uno and let it run for a second, and the
Arduino Uno should be ready to be programmed. The common problem you will notice with the
robots if the EEPROM has not been cleared is that it is very hard to calibrate the driving offsets for the
robot to drive straight.

In order to program an Arduino microcontroller, the Arduino IDE (Integrated Development
Environment) must be downloaded from this site online, http://arduino.cc/en/main/software. At the
time of this draft, the current version of the Arduino IDE, version 1.6.9, has bugs in it that prevent it
from working properly with our codes. New additions of the IDE may resolve this issue, but until then
it is necessary to use the Arduino IDE version 1.0.6 which can be found online at
http://www.arduino.cc/en/Main/OldSoftwareReleases - previous.

eCe eeprom_read_qb | Arduino 1.0.6

eeprom_read_gb

S

* EEPROM Read

*

Reads the walue of each byte of the EEPROM ond prints it
* to the computer.

* Thig example code iz in the public domain.

#

#inc lude =ND/Memory/EEPROM b=
A¢ start reading from the first byte {oddress @) of the EEPROM

int oddress = B;
bete value;

— T

long EEPROMReqdshort (int addressl, int oddress2)

{
AfRead the 2 bytes from the eeprom memory.
long two = EEPROM.rend{addressl);
long one = EEPROM.reqd{addressz);

FfReturn the recomposed long by using bitshift.
return ({two =< B) & BxFF) + ({one =< 8) & OxFFFF);
¥

void setupd)

/A initiolize seriaol and wait for port to open: b

-

Arduino Uno on fdev/cu.usbmode mfd121

http://arduino.cc/en/main/software
http://www.arduino.cc/en/Main/OldSoftwareReleases#previous

Library Files: ND

Before you add the ND library to your core directory, the EEPROM.h file is one that may
already exist in your Arduino cores library. If it does, you should find and delete it. You should be able
to find this using a simple search function in your windows browser. The reason you must do this is
because there is another EEPROM.h file that is located in the ‘ND’ folder that you will add to your core
directory. Your code may not compile if you have two instances of the same header file. The
difference between these files is that in the EEPROM.h file that is in the ‘ND’ folder, there has been
constants added that provide addresses for storing data in the EEPROM. These constants are for
driving offsets, which are used in all of the robots. More addresses can be added to this header file if
there is need to permanently store more constants, but know that the EEPROM has a limited number
of write/erase cycles.

In order to set up the Notre Dame header files and classes, the ND folder must be pasted into
the location, hardware — arduino — cores — arduino. During compilation, the Arduino IDE looks in
three directories for any libraries or header files. These directories are the library folder of the
program, the sketchbook library folder, and the core directory (hardware — arduino — cores —
arduino). First, locate the hardware directory, which is most likely in the same folder as the
executable file (.exe) where the IDE was installed. Then, follow the path for the core directory, found
above, and paste the folder called ‘ND’ at this location. Now, all the main programs can be uploaded
to the board because the compiler and assembler can access the proper header files and classes.

Drive Code: StdBase_2015_Drive.ino

This section of the Code guide aims to show the reader parts of the drive code and explain
what each section does. This is the code that is uploaded onto the drive stack housed within the
robot. This is not however a line by line guide, but the essential parts of each section of code will be
discussed.

For Arduino, it is necessary to include several header files (.h files). This is accomplished by
using the syntax #include <filename.h>. Define statements, which are created similarly to
include statements, make specified strings equal to a value or another string.

<ND/Ebox/BXDATA. h>
<ND/Actuation/Motors.h>
<ND/¥bee/ND XBEE.h>

e <ND/Sensors/Sensor.h>

uzing namespace ND;

[/ Baud Rate
#define BAUD RATE 38400

// RAddresses
CONTROLLEE ADDRESS 0x3001

#define

in Settings
THROTTLE_GAIN 140 // for driwve wheels
THROTTLE GAIN LOW 75 // slow speed for drive wheels
STEERING GRIN 50 // for drive wheels
#define STEERING GAIN LOW 40 // slow speed for drive wheels

[/ OEfsets
#define ZERO OFFSET O

// Controller Mode constants
MANUAT, MODE 1
RUTOMATIC MODE 2
CALIBRATION MODE 3
TUTCRIAL MODE 4

#define
#define

#define

fdefine

BOUNCEDELAY 20

SPIN HRED 80 // this wvalue is used to determine the spin in place for

spinning with RB and 1B ..

The BAUD_RATE is a measure of the number of bits that can flow through a communications
channel per second. The CONTROLLER _ADDRESS allows the XBee to determine which controller it
should be receiving data from. Each robot should have its own address, or else the signals from their
controllers will interfere. The Throttle and Steering Gains modify the x and y inputs from the Xbox
controller joysticks used to drive the robot. The left joystick controls the THROTTLE_GAIN value, which
controls forward and backward motion, and the right joystick controls the STEERING_GAIN value,

which controls left and right turning.

0 and 1 are BX and TX, used by the Xbees

TRCKLE SENSQR PIN & // first interrupt ... this is digital pin 2
LEFT MOTOR PIN 10 // interi
RIGHT MOTOR PIN 11 // interior wire

wire

These lines of code define the pin for the left motor to be pin 10 and the right to be pin 11.

The tackle sensor pin will be pin 8.

void updateDriveF (boole
void control (signed char,

uzing namespace ND;

Here, the coder declares the names of two functions, updateDriveF and control, and defines

their output and input data types. The namespace is called ND.

//#define DEBUG TIME
#ifdef DEBUG_TIME

long timedbg;
#endif

//#define DEBUG

def DEBUG // wariables used in debugging
int * walsl, *wals2;

motor offsets mo:

uint8_t wal:

#endif

These lines of code relate to variables needed for the debugging process. As we are assuming
that this drive code is functional, we will not investigate this in detail.

// Motor Class
Servo 1m; Servo rm;
Motors Wheels(zlm, srm, THROTTLE GAIN,STEERING GARIN, ZERC QOFFSET): // used to control & pair of

3teering motors
booclean blnSlowGains = falsej

v

// Data Classes

ND_XBEE ndbee; // used for RF communication

Exl6Response rxlé = RxléResponse();

RYXDATA rxdata; // used to handle the incoming data from the xbox controller... button presses, releases, etc.

// Sensor Class
bocl tackled = false; // determines if you are tackled or not
Tackle Sensor tackle sensor (TACKLE SENSOR FPIN);

uinté_t message[l] = {1}:

int count;

These lines create variable definitions and also organize the various data inputs and outputs
into data classes. These variables, since they are defined outside of the main loop and any interior
functions, are treated as global variables.

tup motors;

lm.attach (LEFT_MOTOR PIN); rm.attach(RIGHT MOTOE FINj;
Wheels.steering gain = STEERING GAIN:
Wheels.throttle gain = THROTTLE GAIN;
Wheels.Stop():
Serial.begin (BAUD BATE):

// setup the BF commmnicaticn

ndbee = ND XBEE () ;
ndbee.xbee.3etSerial (Serial);

rxdata = REXDATA();
Serial.println(™3TARTING..."):
delay(2000)r // delay 2 seconds

This void setup() function is applied right before beginning the code’s main loop. In this code,
the servos Im and rm are attached to their corresponding pins. The gains of both throttle and steering
are also set to their corresponding values. Setup() also immediately sets the wheels at Stop, so the
robot doesn’t take off on activation. After that line, the code prompts the Arduino to begin looking for

the serial date at the designated baud rate, though there is an initial 2 second delay to process
everything, so that the robot doesn't immediately drive away.

The remaining code all takes place within the void loop() function.

vaid loop() {
static long timeout timer;

/7 Part 1. Read the Tackle Sensor

tackle sensor.Read():

// Part 2. Read the Xbee Packet
if {ndbee.Read{)) [
J/ got something —- Check the RAddress
if (ndbee.RAddresslé() == CONTROLLER ADDRESS) [
rxdata.set (ndbee.getData()) ;
#ifdef DEBUG

Serial .print(™Succes™):
rxdata.debugprint (a5erial);
#endif

}
#ifdef DEBUG

t (ndbee.Addressl6e());
t{™ ADDEA\E™);

1™

gotsomething™);

timeout_timer=mi

1 else |
rydata.NoPacket = true;

if (timeout timer + 250 <= millis()) rxdata.ZERO(): // after so many cycles of no packets send default signals to actuators...

{rxdata.TimeOut ()} rxdata.ZERO():; // after 3o many cycles of no packets cut the power...

These lines of code are split into two parts. The first part is fairly self explanatory in that it
looks for data input from tackle_sensor to see if it has been triggered. The second part looks at the
incoming XBee packet from the controlling Xbox controller. It also includes several lines for the case of
debugging mode.

// Part 3. Select ur Mode

Yo
ch {rxdata.get (MODE,2)+1) {

case MANUAL MOLDE:
updatebDriveF (falae); // Always update the drive control

break;

case AUTOMATIC MODE:
updateDriveF (false); // Rlways update the driwve control

break:

case CALIBRATION MODE:

The three cases outlined here are simply to select the operating mode that it functions in.
Automatic and Manual mode are similar in that they constantly use the updateDriveF and update the
drive control. The calibration mode has several commented lines of code associated with it for the
purpose of calibrating the button inputs to certain actions of the robot. The commented lines are not
shown but the functional code is.

f/ Just enable the analog driving feature in this mode

Wheels.Controller (rxdata.getJovstick (LY}, rudata.getTrigger{12));

if ({rxdata.getTrigger({R2}}) [// calibrate the rewverse offszet if R2 is pressed
Wheels.cdata.fwd rev = CALIBRATE REVERSE;
Wheels.cdata.left right = CALIERATE MOTOR REVERSE;

} elae [// calibrate the forward offset if R2 is not pressed
Wheels.cdata.fwd rev = CALIBRATE FOEWARD;
Wheels.cdata.left right = CALIBRATE MOTOR FORWRRD;

// Deal with the Buttons

if (rxdata.ButtonPress(i)) Wheels.Calibrate({ -1 , Wheels.cdata.fwd rev);
if (rxdata.ButtonPress(Y)) Wheels.Calibrate(1 , Wheels.cdata.fwd_rev);
if (rxdata.ButtonPress(X)) Wheels.Calibrate({ MOIQOR_LEFI , Wheels.cdata.left_right):;
if (rxdata.ButtonPress(B)) Wheels.Calibrate({ MOTOR_RIGHT , Wheels.cdata.left right);

if (rxdata.ButtonPress(5TRRT)) Wheels.Calibrate (0, CALIERATE SAVE OFFSEIS);
#ifdef DEBUG
mo = Wheels.offsa():
Serial.println(}; Serial.pr
Seria

Serial.print (mo.forward()}; Serial.print("™ \trev: "):
"™ \tdir: "); Serial.println(mo.direct());
fendif

break;

The last mode mentioned in the code is a tutorial mode.

case TUTORIAT. MODE: // TUTORIAL MODE:

updateDriveF (true); // Always update the drive control

break;

#ifdef DEBUG_TIME
Serial.pr {"0ne loop = "); Serial.print{micros()-timedbg):; Serial.println{” microseconds™):
timedbg = micros():

#endif

The latter half of the above section of code is for the debugger mode.

id control {signed char throttle, signed char steering, 3signed char side2aide) |
if (!tackle sensor.tackled()) {
Jrif {!tackled)
Wheels.Controller {throttle, steering);
#ifdef DEBUG
valsl = Wheels.wvals(l);
vals2 = Wheels.wvals({2);:
Serial.print ("Left: "J; Serial.print(wvalsl[0]); Serial.print(™ \t"):
nt ("Right: "); Serial.println{vals2[0]);

-
o

Serial.pri

#endif
}
else [// stop the motors if tackled
Wheels.Stop():
#ifdef DEBUG

Serial.pr
#endif

1n ("TACKLED") ;

The above code uses a function previously defined as control. Here it is fleshed out in detail.
The first line of code checks to see if the tackle sensor has been activated. If not, it uses the function

Wheels.Controller() to drive the wheels of the robot. If the tackle sensor is triggered, then the
function forces the wheels to come to a stop.

1 updateDriveF (boolean blnTutorlialHode) |
if (tackle sensor.tackled()) Wheels.3top(): // brake
else |
if (rxdata.getTrigger(R2) && rxdata.getTrigger(L2)){ /f L2 + B2 is brake
1f {Wheels.mowving) Wheels.Scop():
} elese 1f (blnTucorialiMode)
Wheels.steering gain = STEERING GRIN_LOW:
Wheels.throttle _gain = THROTTLE GAIN_LOW;:
} elae if {(rxdata.ButtonPreaa{R3)} [// Fresa R3 to toggle gaina
if ({blnS5lowGaina) |
blnSlowGains = false;

Wnheels.steering_galn = STEERING GAIN:
Wheels.chrottle_galn = TAROTTLE_GRIN:

el [
blnSlowGaina = true;

Wheels.steering gain = STEERING GRIN LOW;
Wneels.throttle gain = TH?ET:;E_G&LN_;CF:

b
if {rxdata.getTrigger(R2))

Wheels.TurnRight (rxdata.getdoyatick (LY}, cudata.getIrigger (R2)); 7/ high speed turning right
e2lae if (rzdata.getTIrigger (L2))

Wheela.Turnleft (rrdaca.getdJoyatick (LY) ,rxdaca.getTrigger(L2)); / high speed turning lefc
elae 1f (rxdata.g=st(R1))

Wheels.Move (SPIN HARD, -5PIN_HARD): // 3pin fast right (OW looking &t ground)
else if [rxdata.get{Ll))

Wheels.Move (-5PIN _HARD, SPIN HRBD): S/ apin fast left (CW looking at ground)
e] e

concrol {rxdata.getJovacick (LY), radata.getJoyvatick (RX), rzdata.gecloyacick(Ll¥)): // conctrol

This second function, updateDriveF does a few things. The first thing it checks is if R3 (joystick
button) has been pressed down. If yes, then the robot switches to a low gain mode, which gives the
controller more control at the expense of speed. Pressing R3 again will reset back to normal gain
mode. The updateDriveF function also checks both the left and right bumper buttons for inputs, and
writes actions for the wheels that are appropriate for the button input.

Controller Code: FinalTx_Proto.ino

This section of the Code guide aims to show the reader parts of the controller code and
explain what each section does. This is the code that is uploaded onto the controller stack that is
connected to the Xbox controller.

#define BAUD RATE 38400
#define ROBOT ADDRE3S 0Ox1001 // Bobot address in hex

Ahkkbkhkrddhdkrdrddhdkrhrrhdhdhrd

#include «<ND/¥box,/XBOXUSB.h>
#include <ND/Xbox/NDXBOX.h>
#include «<ND/Xbee/ND XBEE.h>

U5EB Usb:

XBOXUSE Xbox(zUsb)r

S/ Setup the ND xbox class

XBOX ndbox (sXbox, £Usb) »

S/ Setup the ND xbee class:

ND_XBEE ndbee;

uintd_t statvar = 07

uintd t error count = 0; // counts the number of errored messages

This first section of code establishes the controller’s outgoing baud rate, the address of the
robot it is connected to, function prototypes, and the different header file inclusions needed for this
Arduino code. It also creates different global variables and classes.

[/f#define DEBUG TIME
#ifdef DEBUG TIME

long timel, timeZ:
#endif

gdefine DEBUG
gifdef DEBUG
uintg_t *fake;
#endif
Once again, the relevant debugging section of the code is included but not discussed in this
tutorial.

void setup() {
Serial .begin (BAUD RATE):
ff Initialize classes
ndbox.init{s5erial); ndbee = ND XBEE():
ndbee . xbee.setSerial (Serial) ;
/f wait for the xbox to connect
while (!ndbox.isConnected()) [ndbox.Update():}// vou maust poll the xbox until it svyncs upl
ndbox.Eotate () ;
/f Walt until vou get a response

do |
ndbee.Send (ndbox.get () , ROBOT_ADDRESS, PRAYLOAD SIZE);
delay {50}
} while (ndbee.WaitForResponse (5000} != TX_STATU3 SUCCESS);

ndbox . Led0n (LED1) ;
ndbox. Send0nOff (1) ;
delay(3000) ;]

This setup function first establishes, then initializes the serial connection between the
controller and the lineman. The controller first searches for the standard base, and then waits until
the standard base responds to the connection. When connection is successful, the controller has its
“first player” LED light up (the top left light of the four lights that surround the center Xbox button),
and then waits 3 seconds before going into the main loop.

void loop() {
#ifdef DEBUG TTME
timel = micros():
#endif
/4 change the mode if XBOX button pressed
if (ndbox.ButtonPress (XBX)) |
ndbox. SetMode {ndbox . GetMode () +1) 7
}
ndbox.Update () ; /S update the data
f/ get the payload and send it to the robot addresa :)
ndkee.Send (ndbox.get (), BOBOT_ADDRESS, PRYLOAD SIZE);
Serial.println{):
/4 Wait for a Response for 1 second
statvar = ndbee.WaitForBesponse (1000);
f/Interpret the status responae
switch (statwvar)

f

This section of the main loop changes the functioning mode of the lineman. From the setup
function, the serial data connection has already been established, and the ndbox.Update and
ndbee.Send functions update the linemen based on controller inputs.

FELLELEARFri i re b ff/y CASE TX STATUS SUCCESS J// /S0 0 Frrirriiid
case TX_SIATUS_SUCCESS:1
ndbox. LedOn (ndbox. led ()) ;
error_count=0;
#ifdef DEBUG
Serial.print("Success™);
#endif
break;
FELLELEAPrria L rerrr il CASE TX STATUS TIMEQUT J///fF 0000 FFFEEriiid
case T STATUS TIMEOUT:
ndbox. LedOn (ALL) ;
ndbox.Alternate () ;
#ifdef DEBUG
Serial.print("timecut™);
#endif
break;
FELAELEARrr i e rdrrrfff/y CASE TX STATUS ERROR S// /AP S A0 EETEEEriiis
case TEX STATUS ERROR:
if (error_count >= 5) {
ndbox.Led0n (ALL) ; ndbox.BlinkFast();
} £l3e error_count+t;
#ifdef DEBUG
Serial.print{"error™);
#endif
break;
.-'r.-'r."r.fr.fr."r 'r.f r .-'r."r.fr.fr.fr.-'r.f r .- / .fr.fr.fr ! r.'" ﬁASE IX_SIATUE r'r."r.fr.fr.fr.-'r.fr.-'r.-'r"r.f .fr.fr 'r.f ! .-'r"r.fr.fr.fr."r.fr
case TX STATUS EBX:
#ifdef DEBUG
Serial.print ("BX"):
#endif
break;
case TX STATUS OTHER: Serial.print(™0ther™): break:
default: break;

e

delav (25);
#ifdef DEBUG
ndbox.debugprint {s5erial) ;
#endif
#ifdef DEBUG_TIME
time2 = micros():;
1t ("One loop = "); Serial.print(time2-timel); Serial.println{™ microseconds™);

Serial.prin
#endif

The CASE TX_STATUS part of the code involves the time the driver has to wait until the
lineman and the controller are synced up. If the connection is successful the top left light on the
center of the controller will light up. If the connection is not yet established then the lights will rapidly
alternate, and if the connection fails or there is some kind of error, all of the LEDs on the center
button will rapidly blink in unison.

Uploading Code

After the drive code or the controller code is downloaded from your browser, it must be
uploaded to its respective Arduino microcontroller. The drive code is to be uploaded to the Arduino
placed within the robot, and the controller code is to be uploaded to the Arduino attached to the
Xbox controller. The following steps to upload code to an Arduino are provided for the Arduino IDE
(Integrated Development Environment) for both Windows and in Mac. The concepts can be applied to
the IDE in other operating systems if necessary.

Windows

1. Make sure the serial cord is connecting the board to the computer.

2. Select the board type (Tools—Board—Arduino Uno). Note that the computer usually configures
this for you.

3. Select the COM port (Tools—Serial Port—COM #).

4. If an XBee shield is attached to the board, make sure that the switch is moved towards ‘USB’ or
‘DLINE’ and not ‘XBEE’ or ‘UART".

5. Upload the code by clicking the right arrow in the upper left corner next to the verify button
(checkmark).

6. Wait until IDE is done uploading and the program should be running on the Arduino.

Macintosh

1. Make sure the serial cord is connecting the board to the computer.

2. Select the board type (Tools—Board—Arduino Uno). Note that the computer usually configures
this for you.

3. Select the COM port (Tools—Serial Port—COM #). The COM # will either be
‘/dev/cu.usbmodemfal21’ or the ‘/dev/cu.usbmodemfal31’ for MacBook Pro’s depending on
which usb port you are using.

4. |If an XBee shield is attached to the board, make sure that the switch is moved towards ‘USB’ or
‘DLINE” and not ‘XBEE’ or ‘UART".

5. Upload the code by clicking the right arrow in the upper left corner next to the verify button
(checkmark).

6. Wait until IDE is done uploading and the program should be running on the Arduino.

Common Arduino IDE Problems

There are many quirks when programming in the Arduino IDE. When first starting the Arduino
IDE, the first compilation takes a longer time than subsequent compilations so do not be impatient
during the first compilation. Here is a list of other common error messages that show up in the
Arduino status window while uploading and compiling:

P: Uploading Error. avrdude: stk500 getsync(): not in sync: resp=0x00
S: The Xbee Shield is probably switched to XBEE’ or ‘UART’. Switch it to ‘USB’ or ‘DLINE’.

S: This could be a number of different problems. Consult
http://www.ladyada.net/learn/arduino/help.html

P: Compilation Error. unable to rename core.a ; reason: File exists

http://www.ladyada.net/learn/arduino/help.html
http://www.ladyada.net/learn/arduino/help.html

S: Two or more programs are trying to be compiled at once. Wait until the program finishes
compiling and compile again.

P: Uploading Error. processing.app.SerialNotFoundException: Serial port COM# not found. This
message is much longer, but this is how it begins. This error also may come in the form of the Arduino
IDE asking to upload to a different COM port if the COM ports are available.

S: The IDE does not recognize the COM port. Follow the list below:
1. Select the COM port (Tools—Serial Port—COM #). If the COM port is not there,

2. 2. Turn off all wireless communication to that Arduino (turn controller off), and
make sure the Xbee shield is switched to USB (if applicable).

3. Unplug the serial cord to cut off power to the board and then reattach the serial
cord.

4. Select the COM port (Tools—Serial Port—COM #). If the COM port is still not
recognized,

5. Close all instances of the Arduino IDE and restart the program. If the COM port is
still not recognized,

6. Restart the computer and reopen the Arduino IDE. If the COM port is still not
recognized, consult Google.

There are some different uploading errors that occur occasionally that seem to not make sense. Try
uploading the code again to see if the error persists. Usually this will just go away. In the case of any
problem, always try Googling it because there are many forums and resources available.

