Math 10360, Exam 1
September 25, 2007

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for 1 hour and 15 min.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 11 pages of the test.

Please mark your answers with an X, not a circle!

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>2.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>3.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>4.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>5.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>6.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>7.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>8.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>9.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>10.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>11.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>12.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Please do NOT write in this box.

Multiple Choice

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
</tr>
</tbody>
</table>

Total
Multiple Choice

1. (5 pts.) If \(x > 3 \), which of the following is equal to
\[\ln \frac{\sqrt{x^2 - 9}}{(x^2 + 4)^{2}} \]?

(a) \(4 \ln(x - 3) + 4 \ln(x + 3) - 2 \ln(x^2 + 4) \)
(b) \(\ln \left(\frac{1}{4}(x^2 - 9) - 2(x^2 + 4) \right) \)
(c) \(\frac{2 \ln(x - 3) \ln(x + 3)}{\ln(x^2 + 4)} \)
(d) \(\frac{1}{4} \ln(x - 3) + \frac{1}{4} \ln(x + 3) - 2 \ln(x^2 + 4) \)
(e) \(\left(\ln(x - 3) + \ln(x + 3) \right)^{1/4} \frac{1}{(\ln(x^2 + 4))^{2}} \)

2. (5 pts.) Which of the following is the equation of the tangent line to the curve \(\ln(y) \ln(x) = 1 \) at the point \((e^{1/2}, e^{2})\)?

(a) \(y + e^{3/2}x = 2e^{2} \) (b) \(y + 3e^{3/2}x = 4e^{2} \) (c) \(y + 4e^{3/2}x = 5e^{2} \)
(d) \(y + 2e^{3/2}x = 3e^{2} \) (e) \(y + 5e^{3/2}x = 6e^{2} \)
3. (5 pts.) If \(f(x) \) is a differentiable function with inverse function \(f^{-1}(x) \) satisfying
\[
 f(1) = 2, \quad f(2) = 3, \quad f'(1) = 4, \quad f'(2) = 3, \quad f'(3) = 2
\]
which of the following is equal to \((f')^{-1}(2) \)?

(a) \(\frac{1}{3} \) \quad (b) \(\frac{1}{2} \) \quad (c) \(3 \) \quad (d) \(4 \) \quad (e) \(\frac{1}{4} \)

4. (5 pts.) Which of the following functions is equal to the derivative \(f'(x) \) of the function
\[
 f(x) = e^{\sin x}
\]

(a) \(\cos x \, e^{\cos x} \) \quad (b) \(\cos x \, e^{\sin x} \) \quad (c) \(\cos x \, e^{-\sin x} \)

(d) \(-\sin x \, e^{\cos x} \) \quad (e) \(\sin x \, e^{\cos x} \)
5. (5 pts.) Evaluate the integral
\[\int \frac{3 + 2e^x}{e^{3x}} \, dx. \]

(a) \(3e^{-2x} + 2e^{-2x} + C \)
(b) \(\frac{3 + 2e^x}{e^{3x}} + C \)
(c) \(-3e^{-2x} - 2e^{-2x} + C\)

(d) \(-e^{-3x} - e^{-2x} + C\)
(e) \(e^{-3x} + e^{-2x} + C\)

6. (5 pts.) Evaluate the integral
\[\int \frac{\sin x}{2 + \cos x} \, dx. \]

(a) \(\ln(2 + \sin x) + C \)
(b) \(-\ln(2 + \cos x) + C \)
(c) \(\ln(2 - \sin x) + C\)

(d) \(\ln(2 + \cos x) + C\)
(e) \(-\ln(2 + \sin x) + C\)
7. (5 pts.) If
\[\log_3(x - 5) = 3 \]
then

(a) \(x = e^3 + 5 \)
(b) \(x = 18 \)
(c) \(x = 32 \)
(d) \(x = \ln 3 + 5 \)
(e) \(x = 14 \)

8. (5 pts.) Which of the following is the value of

\[\sin \left(\arctan \left(\frac{x}{\sqrt{3}} \right) \right) \]?

(a) \(\frac{x}{\sqrt{x^2 + 3}} \)
(b) \(\frac{\sqrt{3}}{\sqrt{x^2 - 3}} \)
(c) \(\frac{x}{\sqrt{x^2 - 3}} \)
(d) \(\frac{\sqrt{x^2 + 3}}{\sqrt{3}} \)
(e) \(\frac{\sqrt{x^2 - 3}}{x} \)
9. (5 pts.) The equation of the tangent line to the graph of the function

\[f(x) = \arcsin(3x) \]

at the point where \(x = \frac{1}{6} \) is given by

(a) \(y = \frac{\pi}{6} + \frac{2}{\sqrt{3}} \left(x - \frac{1}{6} \right) \)

(b) \(y = \frac{\pi}{3} + \frac{2}{\sqrt{3}} \left(x - \frac{1}{6} \right) \)

(c) \(y = \frac{\pi}{6} + 2\sqrt{3} \left(x - \frac{1}{6} \right) \)

(d) \(y = \frac{\pi}{6} + \sqrt{3} \left(x - \frac{1}{6} \right) \)

(e) \(y = \frac{\pi}{6} + 2\sqrt{3} \left(x - \frac{1}{6} \right) \)

10. (5 pts.) Evaluate

\[\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx. \]

(a) 0 (b) 1 (c) \(\frac{\pi}{2} \) (d) \(\frac{\pi}{4} \) (e) \(\frac{1}{2} \ln 2 \)
11. (5 pts.) $2000 is invested in a savings account in which the interest is compounded continuously. What is the annual interest rate (as a percentage) if it takes 20 years for the balance to be $4000?

(a) \(r = 20 \ln 5 \% \) \hspace{1cm} (b) \(r = 2 \ln 5 \% \) \hspace{1cm} (c) \(r = 2 \ln 20 \% \)

(d) \(r = 20 \ln 2 \% \) \hspace{1cm} (e) \(r = 5 \ln 2 \% \)

12. (5 pts.) Which of the following is a solution of the differential equation \(y' + y = x \) ?

(a) \(y = x - 1 + 2e^{-x} \) \hspace{1cm} (b) \(y = 1 + e^{-x} \)

(c) \(y = e^{-x} \) \hspace{1cm} (d) \(y = x - 1 + 2e^{x} \)

(e) \(y = x - 3e^{-x} \)
Partial Credit
You must show your work on the partial credit problems to receive credit!

13. (10 pts.) Use the substitution $u = \sqrt{x} + 1$ to evaluate the integral

$$\int \frac{x}{\sqrt{x} (\sqrt{x} + 1)} \, dx.$$
14. (10 pts.) If

\[F(x) = \int_0^{e^{2x}} \ln(t^2 + 1) \, dt, \]

evaluate the derivative \(F'(x) \).
15. (10 pts.) Use logarithmic differentiation to find dy/dx where

$$y = x^{\ln x}.$$
16. (10 pts.) Evaluate
\[\int_{0}^{\sqrt{2}} \frac{x}{x^4 + 4} \, dx. \]
The Honor Code is in effect for this examination. All work is to be your own.
No calculators.
The exam lasts for 1 hour and 15 min.
Be sure that your name is on every page in case pages become detached.
Be sure that you have all 11 pages of the test.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>2.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>3.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(●)</td>
</tr>
<tr>
<td>4.</td>
<td>(a)</td>
<td>(●)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>5.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>6.</td>
<td>(a)</td>
<td>(●)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>7.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>8.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>9.</td>
<td>(a)</td>
<td>(b)</td>
<td>(●)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>10.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(●)</td>
<td>(e)</td>
</tr>
<tr>
<td>11.</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(●)</td>
</tr>
<tr>
<td>12.</td>
<td>(●)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
</tbody>
</table>

Please do NOT write in this box.

Multiple Choice
13.
14.
15.
16.
Total