
Math 20580	Name:		
Practice Midterm 1	Instructor:		
February 12, 2015	Section:		
Calculators are NOT allowed. Do not remove this answer page – you will return the whole			
exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are			

finished. There are 8 multiple choice questions worth 7 points each and 4 partial credit questions

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Part I: Multiple choice questions (7 points each)

1. Consider the linear system

$$2x_1 + 3x_2 - 2x_3 = 1$$
$$x_1 + 4x_2 = 5$$

Which of the following (x_1, x_2, x_3) is a solution?

(a) (-3/5, 7/5, 1) (b) (2/5, 3/5, 1) (c) (7/5, 3/5, 1) (d) (4/5, -3/5, 1)(e) (2/5, 7/5, 1)

2. For which constants t do the vectors $\begin{bmatrix} 1\\0\\t \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} 2\\-1\\-2 \end{bmatrix}$ span all of \mathbb{R}^3 ? (a) t = 1 only (b) all $t \neq 1$ (c) t = -1/5 only (d) all $t \neq -1/5$ (e) there are no t 3. Which column in the matrix below is the first from the left which is a linear combination of the previous ones?

$$\begin{bmatrix} 0 & 1 & 1 & 2 & 1 \\ 1 & 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 1 & -1 \\ 1 & 0 & 2 & 0 & 3 \end{bmatrix}$$
(a)
$$\begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$
(b)
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$$
(d)
$$\begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$
(e)
$$\begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \end{bmatrix}$$

4. Is the linear transformation corresponding to the matrix below one-to-one or onto?

$\boxed{2}$	1	3	2
1	2	1	0
0	1	-1	1

(a) both one-to-one and onto	(b) one-to-one but not onto
(c) onto but not one-to-one	(d) neither one-to-one nor onto

5. Find the determinant of the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 8 & 2 & 9 \\ 0 & 3 & 0 & 4 \\ -1 & 10 & 20 & 30 \end{bmatrix}$$

(a) 2 (b) 4 (c)
$$-4$$
 (d) -2 (e) 0

6. Which of the following matrices are invertible?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 4 & 1 \\ 2 & 5 & 2 \\ 3 & 6 & 3 \end{bmatrix} \qquad D = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 10 & 20 \\ 0 & 0 & 9 \end{bmatrix}$$

(a) only D (b) they are all invertible (c) C and D only
(d) B and C only (e) only C

7. If B is the matrix below, and $C = (B^T)^5$, compute det(C).

(a) 0 (b)
$$2^{10}$$
 (c) -2^{10} (d) 6^5 (e) -6^5

8. Compute the dimension of the Null-space of the matrices below.

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$
(dim Nul(A), dim Nul(B), dim Nul(C)) =

(a) (0,0,2) (b) (2,2,2) (c) (1,0,3) (d) (0,1,1) (e) (2,1,1)

Part II: Partial credit questions (11 points each). Show your work.

9. Find a solution to the linear system

$$x_1 + x_3 = 1$$

$$2x_1 + 2x_3 + x_4 = 1$$

$$x_1 + x_2 + 2x_3 = 2$$

$$2x_2 + x_3 + x_4 = 1$$

10.

$$A = \begin{bmatrix} 1 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 \\ 3 & 1 & 0 & -1 \end{bmatrix}$$

(a) A gives a linear transformation $T_A : \mathbb{R}^p \to \mathbb{R}^q$. What are the numbers p and q?

(b) Find a nonzero vector x in \mathbb{R}^p which is a solution of the homogeneous equation Ax = 0 (or explain why there are none).

(c) Find a vector b in \mathbb{R}^q which does not lie in the image of T_A (or explain why there are none).

11. Find the inverse of A, where

$$A = \begin{bmatrix} 2 & -1 & 4 \\ -2 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

12. Consider the matrix A below.

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 4 & 2 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

(a) Find a basis for the column space $\operatorname{Col}(A)$.

(b) Let v be the last column of A. Find the coordinates of v relative to the basis found in part (a).