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Abstract. We investigate relations between isotopies of Lagrangian
tori and stabilized symplectic embeddings. An analogue of a con-
jecture of McDuff about stabilized embeddings holds for a relation
on 4 dimensional ellipsoids involving Lagrangian isotopies, at least
if we assume certain Markov triples generate a complete list of
the relevant Hamiltonian isotopy classes of monotone Lagrangian
tori in the ball. This relation interpolates between the notions of
symplectic and stabilized embeddings.

1. Introduction

The symplectic embedding problem is widely open in dimension
greater than 4, although there has been progress on the stabilized prob-
lem, which studies embeddings of products of 4 dimensional domains
with Euclidean space. Adding the Euclidean factor can be shown to
introduce more flexibility, and it is natural to ask if the additional
flexibility entirely results from known constructions. A conjecture of
McDuff [20], see also [17], formalizes this, where we use notation intro-
duced below.

Stabilized Embedding Conjecture. Let x > τ 4 and n ≥ 3.
There exists a symplectic embedding E(1, x)×R2n−4 ↪→ B4(c)×R2n−4

if and only if c ≥ 3x
x+1

.

In Definitions 2.1, 2.4, 3.2, 3.4 we give four relations on 4 dimensional
subsets of R4, which we usually assume to be toric, that is, invariant
under the diagonal torus action. Roughly speaking, we write U ↪→ V
if there exists a Hamiltonian diffeomorphism of R4 mapping U into
V . Write U ↪→S V if there exists a so called stabilized embedding
U × R2n−4 ↪→ V × R2n−4 for some n ≥ 3.

Denote by L(r, s) the Lagrangian torus equal to the product of a
circle of area r in the first R2 factor and a circle of area s in the
second R2 factor. We write U ↪→L V if there exists a smooth family
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of Hamiltonian diffeomorphisms φr,s with φr,s(L(r, s)) ⊂ V , where the
family is parameterized by all (r, s) for which L(r, s) ⊂ U . A slight
refinement of this, denoted U ↪→P V , which requires the images of the
L(r, r) to bound cubes, will also be introduced.

The following holds, where the first two statements are immediate
consequences of the definitions, and the third statement is Proposition
4.1.

Suppose U is toric and convex, then

(U ↪→ V ) =⇒ (U ↪→P V ).

(U ↪→P V ) =⇒ (U ↪→L V ).

If U is toric then

(U ↪→L V ) =⇒ (U ↪→S V ).

We collect evidence in Theorems 2.5, 2.6, 2.7 and 3.3 suggesting the
relations U ↪→L V and U ↪→S V are very close, at least when U is an
ellipsoid. We also outline an argument that either there are Hamilton-
ian isotopy classes of monotone Lagrangian tori in the ball which lie in
the boundary of cubes and fall outside of the (infinitely many) classes
already discovered, or otherwise if x ≥ τ 4 then E(1, x) ↪→P B4(c) if
and only if c ≥ 3x

x+1
.

In Section 2 we briefly introduce symplectic embeddings, then discuss
stabilized embeddings and some results in the ellipsoid case. Section 3
talks about Lagrangian isotopies and some results there, highlighting
the similarity between the relations U ↪→L V and U ↪→S V . We also
discuss the version of McDuff’s question for Lagrangian isotopies. In
section 4 we prove Proposition 4.1.

Acknowledgements. The author thanks Dusa McDuff and Felix Schlenk
for very helpful comments; he also thanks the Simons Foundation for
their support under grant no. 633715.

2. The stabilized symplectic embedding problem

A fundamental problem in quantitative symplectic geometry is the
embedding problem, one version of which we can state as follows. Let
R2n ≡ Cn be the standard symplectic vector space with symplectic
form ω = i

2

∑
dzk ∧ dzk. A Hamiltonian diffeomorphism is the time

1 flow of a possibly time dependent vector field XHt = i∇Ht, where
H : Cn × R → R is smooth and Ht(z) = H(z, t). The Hamiltonian
diffeomorphisms are the diffeomorphisms of Cn which preserve ω.

Embedding Problem. Given U, V ⊂ Cn, does there exist a Hamil-
tonian diffeomorphism φ with φ(U) ⊂ V ?
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To simplify the discussion we introduce the following notation.

Definition 2.1. Write U ↪→ V if, for all compact subsets K ⊂ U ,
there exists a Hamiltonian diffeomorphism φ with φ(K) ⊂ V .

The relation U ↪→ V is weaker than than the existence of an ac-
tual embedding of U into V , but the two notions coincide in many
interesting situations, see [19], [22].

By Liouville’s Theorem, existence of a symplectic embedding U ↪→ V
implies vol(U) ≤ vol(V ). The next embedding obstruction comes from
Gromov’s nonsqueezing theorem.

We fix some notation. The moment map µ : Cn → Rn
≥0 is given by

µ(z1, . . . , zn) = (π|z1|2, . . . , π|zn|2). A toric domain X ⊂ Cn is a subset
invariant under the diagonal torus action, or equivalently a domain of
the form X = XΩ := µ−1Ω for Ω ⊂ Rn

≥0.
Let

e(a1, . . . , an) = {
∑ xk

ak
< 1} ⊂ Rn

≥0

and

p(a1, . . . , an) = {xk < ak ∀k} ⊂ Rn
≥0.

It is also convenient to set b(a) = e(a, . . . , a) and z(a) = e(a,∞, . . . ,∞).
Given this we can define symplectic ellipsoids and polydisks by

E(a1, . . . , an) = µ−1e(a1, . . . , an), P (a1, . . . , an) = µ−1p(a1, . . . , an).

When describing ellipsoids and polydisks we will always assume a1 ≤
· · · ≤ an. The ball of capacity a is B2n(a) = µ−1b(a) and the cylinder
of capacity a is Z2n(a) = µ−1z(a).

Gromov’s nonsqueezing theorem is the following.

Theorem 2.2 ([9]). B2n(a) ↪→ Z2n(c) if and only if a ≤ c.

There has been much work studying symplectic embeddings since
Gromov’s result, but the Embedding Problem remains broadly open,
even for toric domains, and even in dimension 4. Nevertheless symplec-
tic capacities give obstructions to embeddings, and some very precise
results have been obtained, especially in dimension 4 as a consequence
of Embedded Contact Homology (ECH), see [16]. The ECH capacities
associate a sequence of nonnegative real numbers c0(U), c1(U), . . . to
a U ⊂ C2, and turn out to give a complete set of obstructions for em-
bedding ellipsoids into ellipsoids [18], and more generally concave toric
domains into convex toric domains, see [3]. It remains a difficult prob-
lem to work out exactly when one given domain embeds in another, but
the solution for 4 dimensional ellipsoids into balls was worked out by
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McDuff and Schlenk even before the development of ECH capacities,
although still using holomorphic curves.

Let {fn}n≥0 be given by f0 = 1 and then follow the odd index terms
in the Fibonacci sequence. This is the sequence beginning 1, 1, 2, 5, 13, 34, . . . .
Then let an = (fn+1

fn
)2 and bn = fn+2

fn
for n ≥ 0. We have 1 = a0 < b0 <

a1 < b1 < a2 < . . . and lim an = lim bn = τ 4 where τ = 1+
√

5
2

is the
golden ratio.

Theorem 2.3 ([21]).

(i) Suppose an ≤ x ≤ bn. Then E(1, x) ↪→ B4(c) if and only if
c ≥ x√

an
.

(ii) Suppose bn ≤ x ≤ an+1. Then E(1, x) ↪→ B4(c) if and only if
c ≥ √an+1.

In other words a ‘Fibonacci staircase’ appears in the solution of the
embedding problem. We note that bn√

an
= fn+2

fn+1
= 3bn

bn+1
. Hence, when

x < τ 4 the graph of minimal ball sizes is piecewise linear with corners
alternately sitting on the graphs of y =

√
x and y = 3x

x+1
. When x > τ 4

we have 3x
x+1

<
√
x, the volume constraint, and so there are never

embeddings E(1, x) ↪→ B4( 3x
x+1

).
Moving to higher dimensions, we have the general form of the ellip-

soid embedding problem.

Ellipsoid Embedding Problem. Given a1, . . . , an, b1, . . . , bn, does
there exist a symplectic embedding E(a1, . . . , an) ↪→ E(b1, . . . , bn)?

This is widely open, and there are no conjectures of a complete set of
invariants. Indeed, even if we fix n = 3 and b1 = b2 = b3, that is, study
ellipsoid embeddings into the 6 dimensional ball, there is much we do
not know, see [1], Figure 1. Note that by Liouville’s Theorem existence
of an embedding implies Πak ≤ Πbk, and, recalling we always list the
factors in nondecreasing order, Gromov’s theorem implies a1 ≤ b1. In
the other direction Guth [10] established the existence of constants
C(n) such that E(a1, . . . , an) ↪→ C(n) ·E(b1, . . . , bn) whenever a1 ≤ b1

and Πak ≤ Πbk.
Regarding obstructions, most results in higher dimension address the

Stabilized Embedding Problem.

Stabilized Embedding Problem. Let n ≥ 3 and U, V ⊂ C2.
Does there exist a symplectic embedding U × Cn−2 ↪→ V × Cn−2?

When U and V are ellipsoids, this is the special case of the Ellipsoid
Embedding Problem given by setting a3 = · · · = an = ∞, b3 = · · · =
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bn =∞. The problem remains open in general, although progress has
been made.

Again to simplify the discussion we introduce the following.

Definition 2.4. Write U ↪→S V if there exists n ≥ 3 such that, for all
compact subsets K ⊂ U ×Cn−2, there exists a Hamiltonian diffeomor-
phism φ with φ(K) ⊂ V × Cn−2.

We note that a symplectic embedding U ↪→ V is a sufficient condition
for a stabilized embedding U ↪→S V , but since the work of Guth has
been known not to be necessary. There are no known examples where
there exist embeddings U ×Cn−2 ↪→ V ×Cn−2 for some n ≥ 3 but not
for all n ≥ 3.

We close this section with some results, covering ellipsoid embeddings
into balls, ellipsoids and polydisks.

Theorem 2.5 ([12], [4], [20], [5]).

(i) Suppose x ≤ τ 4. There exists a stabilized embedding E(1, x) ↪→S

B4(c) if and only if there exists a 4 dimensional embedding
E(1, x) ↪→ B4(c).

(ii) Suppose x > τ 4. There exists a stabilized embedding E(1, x) ↪→S

B4( 3x
x+1

). Moreover, there exist sequences xn → ∞ and yn →
(τ 4)+ where these embeddings are optimal, that is, if x = xn or
x = yn and c < 3x

x+1
then there do not exist symplectic embed-

dings E(1, x) ↪→S B
4(c).

The first statement above says that the Fibonacci staircase also ex-
ists in the stabilized case. As 3x

x+1
<
√
x when x > τ 4, the second

statement implies that in this range there is strictly more flexibility in
the stabilized case. This statement also led McDuff to conjecture the
embeddings E(1, x)×Cn−2 ↪→ B4( 3x

x+1
)×Cn−2 are always optimal when

x > τ 4. Much more evidence for the Stablilized Embedding Conjecture
comes from Siegel’s work, see [24].

Theorem 2.6 ([6]). Fix k ∈ N≥2 and b = ka. Let x ∈ N have the
opposite parity to k and satisfy x ≥ k + 1. There exists a stabilized
symplectic embedding

E(1, x) ↪→S E(a, b)

if and only if a ≥ 2x
x+k−1

.

Theorem 2.7 ([6]). Let x be an odd integer with x ≥ 2 b
a
− 1. There

exists a stabilized symplectic embedding

E(1, x) ↪→S P (a, b)
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if and only if a ≥ 2x
x+2 b

a
−1

.

The upper bounds in these theorems come from explicit construc-
tions, roughly following [11]. The lower bounds come from holomorphic
curves in ellipsoid cobordisms, and rely specifically on work of Siegel,
[24]. More is known about such curves in dimension 4, where for exam-
ple the techniques of ECH are available, but a key observation is that
in favorable circumstances counts of genus 0 curves with one negative
end in a 4 dimensional ellipsoid cobordism V \ U coincide with counts
of analogous moduli spaces in (V × Cn−2) \ (U × Cn−2).

3. Lagrangian isotopies

As well as for open sets, one can also study the Embedding Problem
in the case when U is a Lagrangian torus L(r, s). Here we concentrate
on dimension 4 and define

L(r, s) = {π|z1|2 = r, π|z2|2 = s}.
Solutions when the target V is a ball, a polydisk, or an integral ellipsoid
were found in [13] and [14] respectively.

One way of stating these results is as a computation of the shape
invariant. Given U ⊂ C2 we define the (Hamiltonian) shape as

ShH(U) = {(r, s) | 0 < r ≤ s, L(r, s) ↪→ U} ⊂ R2
>0.

In the case when U is toric we have µ(U) ∩ {0 < r ≤ s} ⊂ ShH(U)
although we do not have equality.

Theorem 3.1 ([13, 14]).

(i)

ShH(B4(R)) =

{
(r, s) ∈ R2

>0

∣∣∣∣ r + s < R or r <
R

3

}
∩ {r ≤ s}.

(ii) Suppose b
a
∈ N≥2,

ShH(E(a, b)) =

{
(r, s) ∈ R2

>0

∣∣∣∣ ra +
s

b
< 1 or r <

a

2

}
∩ {r ≤ s}.

(iii)

ShH(P (c, d)) =

{
(r, s) ∈ R2

>0

∣∣∣∣ r < c
s < d

or r <
c

2

}
∩ {r ≤ s}.

Clearly, if we have a symplectic embedding U ↪→ V then ShH(U) ⊂
ShH(V ) and so the shape gives a sort of set valued symplectic capacity
obstructing embeddings. However it is far from a complete invariant
and following [15] we can try to get finer invariants by studying not
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just the set of Lagrangians in U ⊂ C2, but the topology of the space of
these Lagrangians (with the natural topology of smooth convergence).
Similar considerations also appear in the article of Shelukhin, Tonkonog
and Vianna [23]. To this end, we make the following definition.

Definition 3.2. Write U ↪→L V if, for all compact K ⊂ µ(U), there
exists a smooth family of Hamiltonian diffeomorphisms φr,s for (r, s) ∈
K, such that φr,s(L(r, s)) ⊂ V .

In this definition, we are assuming not just that the time 1 flows,
that is, the Hamiltonian diffeomorphisms, vary smoothly, but also the
flows over all t. This means we may assume the φr,s are generated by
a smooth family of functions Hr,s : C2 × R → R. We also allow r = 0
or s = 0; in this case L(r, s) is a circle or a point.

We have the following.

Isotopy obstruction. Suppose U = XΩ is toric and U ↪→ V . Then
U ↪→L V .

The following was shown in [15].

Theorem 3.3 ([15]). Let Ω = e(1, x).
(i) Suppose x > c. There exists a family of Hamiltonian embeddings
φr,s : L(r, s) ↪→ B4(c) for (r, s) ∈ Ω with φ x

x+1
, x
x+1

the inclusion, if and

only if c ≥ 3x
x+1

;
(ii) Let b = ka with k ∈ N≥2 and suppose x > b. There exist a family
of Hamiltonian embeddings φr,s : L(r, s) ↪→ E(a, b) for (r, s) ∈ Ω with
φ x

x+k−1
,
(k−1)x
x+k−1

the inclusion, if and only if a ≥ 2x
x+k−1

;

(iii) Suppose x > b and a > 1. Set k = b
a
∈ R. There exist a family

of Hamiltonian embeddings φr,s : L(r, s) ↪→ P (a, b) for (r, s) ∈ Ω with
φ x

x+2k−1
,
(2k−1)x
x+2k−1

the inclusion, if and only if a ≥ 2x
x+2k−1

.

We note that the bounds here are identical to those in Theorem 2.5,
2.6 and 2.7. Theorem 3.3 has the advantage that we do not make as-
sumptions about x being an integer, but replaces this with a hypothesis
about unknottedness of a Lagrangian torus. By unknottedness, for ex-
ample in (i), we mean the requirement that φ x

x+1
, x
x+1

is the inclusion

could be replaced by asking that the image of L( x
x+1

, x
x+1

) be Hamil-
tonian isotopic to L( x

x+1
, x
x+1

) itself, where the Hamiltonian isotopy has

support in the target space B4(c). As a result of this hypothesis we do
not have the same sharp estimates for the general Lagrangian isotopy
relation U ↪→L V .

In the remainder of this section we consider a connection between
the unknottedness condition in Theorem 3.3 and the hypothesis x > τ 4
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in the Stabilized Embedding Conjecture. We concentrate on case (i),
where V = B4(c). By Theorem 2.3, when x < τ 4 we know there
are symplectic embeddings E(1, x) ↪→ B4(c) with c < 3x

x+1
, indeed this

holds whenever x 6= bn. Then Theorem 3.3 implies that the restrictions
of these embeddings to the tori L( x

x+1
, x
x+1

) ⊂ ∂E(1, x) must be knotted

in B4(c).
The tori arising from ellipsoid embeddings are not completely arbi-

trary, in particular they all lie in the boundary of polydisks, namely
the image of the embedding restricted to P (r, s). Hence it is natural to
consider a stronger relation than U ↪→L V , but which is still implied
by U ↪→ V when U is convex. Asking all images of Lagrangian tori to
bound polydisks is very restrictive, and eliminates much of the flexi-
bility present for stabilized embeddings, but it is reasonable to ask the
images of the monotone tori to bound cubes.

Definition 3.4. Write U ↪→P V if, for all compact K ⊂ µ(U), there
exists a smooth family of Hamiltonian diffeomorphisms φr,s for (r, s) ∈
K, such that φr,s(L(r, s)) ⊂ V . Further, if r = s, then φr,r(P (r, r)) ⊂
V .

It has been known for a while that there are actually infinitely many
Hamiltonian isotopy classes of monotone tori in CP 2. This was con-
jectured by Galkin and Usnich, [8], and proven rigorously in the sym-
plectic category by Galkin and Mikhalkin [7] and Vianna [25]. We re-
call that a Lagrangian torus L is monotone if the relative area class
[ω] ∈ H2(CP 2, L) is proportional to the relative first Chern class
c1(TCP 2, TL), where the Chern class is defined with respect to an al-
most complex structure compatible with the symplectic form, so then
TL defines a totally real subbundle. In the case when CP 2 is scaled so
that lines have area 3, the monotone condition means that Maslov 2
disks with boundary on our Lagrangian have area 1.

The monotone Lagrangian tori come from monotone torus orbits in
weighted projective spaces CP 2(a2, b2, c2), where (a, b, c) is a Markov
triple, that is a2+b2+c2 = 3abc. Indeed, these are symplectic toric orb-
ifolds which arise from algebraic degenerations of CP 2, and monotone
tori in the orbifold correspond to tori in CP 2 by parallel transport, see
for example [7]. However not all of these tori bound cubes, and in fact
the only examples come from Markov triples (1, fn, fn+1), where the
fn are the odd index Fibonacci numbers we saw in Theorem 2.3. We
denote a representative of the corresponding Hamiltonian isotopy class
by Ln. We can, and do, choose Ln such that it bounds a cube lying in
the affine part of CP 2, a symplectic ball.
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Here is a very brief outline of the obstruction part of the proof of
Theorem 3.3 (i). Suppose we have a 1 parameter family of embeddings

L(r, s) → Lt ⊂ B4(c) where r = x(1−t)
x+1

, s = x2t+x
x+1

, and 0 ≤ t ≤ 1,
coming from (r, s) ∈ ∂e(1, x). These embeddings give a natural basis
for H1(Lt,Z) where the classes (1, 0) and (0, 1) bound Maslov 2 disks of
area r and s respectively. Arguing by contradiction, if c < 3x

x+1
our ball

B4(c) can be included in a ball B4( 3x
x+1

), which itself can be thought of

as the affine part of a copy of CP 2, in which lines have area 3x
x+1

and
L0 becomes monotone. The assumption that L0 is standard implies
that the class (−1,−1) also bounds a Maslov 2 disk, intersecting the
line at infinity once. The proof analyses a moduli space of such disks
with boundary on the Lt. We note that the area of a disk in the
corresponding relative homology class with boundary on Lt is

3x

x+ 1
− r − s =

3x

x+ 1
− x(1− t)

x+ 1
− x2t+ x

x+ 1

which, at least if we assume x > 2, is negative when t approaches 1.
We conclude that families of Maslov 2 disks in this relative homology
class must degenerate before t = 1, and a bubbling analysis gives the
contradiction.

Now suppose we have the same 1 parameter family of embeddings
L(r, s) → Lt ⊂ B4(c), but with L0 Hamiltonian isotopic to the torus
Ln coming from the Markov triple (1, fn, fn+1). Assuming c < 3x

x+1
, as

above we can include B4(c) in the affine part of a copy of CP 2 with
lines of area 3x

x+1
. The moment polytope of the corresponding weighted

projective space shows now that either the class (−f 2
n+1,−f 2

n) or the
class (−f 2

n,−f 2
n+1) bounds a Maslov 2 disk in our copy of CP 2. The

disk intersects the line at infinity fnfn+1 times. The ambiguity here
is coming from the fact that we are not assuming L0 is isotopic to Ln

via a Hamiltonian diffeomorphism which acts in a particular way on
homology.

In the first case, the area of a disk in the corresponding class with
boundary on Lt will be

fnfn+1
3x

x+ 1
− f 2

n+1

x(1− t)
x+ 1

− f 2
n

x2t+ x

x+ 1
.

This expression is negative when t is close to 1 unless

x ≤ 3fn+1

fn
− 1.

In the second case this upper bound could be replaced by 3fn
fn+1
− 1 .

The sequence fn+1

fn
is increasing and converges to τ 2 as n→∞, and we
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note that 3τ 2 − 1 = τ 4. Hence we arrive at the following extension of
Theorem 3.3 (i).

Theorem 3.5. Let x ≥ τ 4 and Ω = e(1, x). Suppose there exists a
family of Hamiltonian embeddings φr,s : L(r, s) ↪→ B4(c) for (r, s) ∈ Ω
with φ x

x+1
, x
x+1

Hamiltonian isotopic in B4(c) to one of the Ln. Then

c ≥ 3x
x+1

.

A polydisk analogue of the Stabilized Embedding Conjecture would
state that when x > τ 4 we have E(1, x) ↪→P B4(c) if and only if
c ≥ 3x

x+1
. Our Ln are the monotone tori in the ball which appear in

the boundary of cubes and are associated to Markov triples. Rescaling
Theorem 3.5, together with Theorem 3.3 we then have the following.

Corollary 3.6. Either the polydisk analogue of the Stabilized Embed-
ding Conjecture holds, or else there are embeddings of the cube P (1, 1)
into B4(3) whose singular Lagrangian boundary is not Hamiltonian iso-
topic to one of the Ln.

Remark 3.7. Let x < τ 4 and ψ : E(1, x) ↪→ B4(c) ⊂ B4( 3x
x+1

) be given
by Theorem 2.3. Then when bn−1 < x < bn the torus ψ(L( x

x+1
, x
x+1

)) is
Hamiltonian isotopic to Ln, see [2].

4. Lagrangian isotopies imply stabilized embeddings

Here we prove the following.

Proposition 4.1. Suppose U, V ⊂ C2 with U toric. If U ↪→L V then
U ↪→S V .

Proof. Let Ω = µ(U) and K ⊂ Ω compact. We recall U ↪→L V means
there exists a family of Hamiltonian functions Hr,s : C2 × R → R for
(r, s) ∈ K whose time 1 flows satisfy φr,sL(r, s) ⊂ V . We can extend
the family arbitrarily to define a smooth family Hr,s with (r, s) ∈ R2.

Given S > 0, we would like to construct a Hamiltonian diffeomor-
phism mapping

µ−1K ×B2(S) ↪→ V × C.
Let M > 0 and consider the Hamiltonian

G : C3 → R, (z1, z2, z3) 7→ Hx3/M,y3/M(z1, z2)

where we set z3 = x3 + iy3. The projection of the Hamiltonian vector
field XG to the (z1, z2) plane is equal to XHx3/M,y3/M

while the projection

to the z3 plane has order 1/M . Hence, if M is chosen sufficiently large,
the time 1 flow maps L(x3/M, y3/M)× {z3 = x3 + iy3} into V × C.
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Next we consider the Hamiltonian

K : C3 → R, (z1, z2, z3) 7→M(−y3π|z1|2 + x3π|z2|2).

The corresponding flowXK preserves |z1| and |z2|, and its z3 component
is equal to

Mπ|z1|2
∂

∂x3

+Mπ|z2|2
∂

∂y3

.

Suppose then that (w1, w2, w3) = φK(z1, z2, z3), where φK is the time
1 flow and (z1, z2, z3) ∈ K ×B2(S). Putting w3 = u3 + iv3 we see that

π|z1|2 =
u3

M
+O(S/M), π|z2|2 =

v3

M
+O(S/M).

In other words, by taking M large with respect to S, we may assume
that φK(µ−1K × B2(S)) ∩ {z3 = u3 + iv3} lies in an arbitrarily small
neighborhood of L(u3/M, v3/M)×{z3 = u3 + iv3}. Hence we can com-
pose with the map φG to conclude as required. �
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