Answer Key 1

Practice Exam 1.1

September 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

MATH 10560: Calculus II

- 1. a c d e
- 7. a b d e
- 2. a b d e
- 8. a b d e
- 3. a b c d •
- 9. | a | b | | d | e
- 4. a c d e
- 10. | | b | c | d | e
- 5. a c d e
- 11. b c d e
- 6. a b c e
- 12. a b c e

MATH 10560: Calculus II

Practice Exam 1.1

September 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

- 1. a b c d e
- 7. a b c d e
- 2. a b c d e
- 8. a b c d e
- 3. a b c d e
- 9. a b c d e
- 4. a b c d e
- 10. a | b | c | d | e
- 5. a b c d e
- 11. a b c d e
- 6. a b c d e
- 12. a b c d e

- 1. Simplify $tan(sin^{-1}(x))$.

- (a) $\frac{1}{1+x^2}$ (b) $\frac{x}{\sqrt{1-x^2}}$ (c) $\frac{\sqrt{1+x^2}}{x}$ (d) $\frac{x}{\sqrt{1+x^2}}$ (e) $\frac{\sqrt{1-x^2}}{x}$
- 2. Use integration by parts to evaluate $\int_0^1 x \, 3^x \, dx$.
- (a) $\frac{\ln 3 1}{(\ln 3)^2}$ (b) $\frac{1}{\ln 3}$ (c) $\frac{3 \ln 3 2}{(\ln 3)^2}$ (d) 1 (e) $\frac{3}{\ln 3} 2$
- 3. The half-life of bismuth-210 is 5 days. A sample originally has a mass of 100 mg. Determine the number of days it will take for the mass to be reduced to 1 mg.
- (a) $\frac{\ln(2)}{5}$ (b) $\frac{\ln(100)}{5}$ (c) $-\frac{\ln(.01)}{5\ln(2)}$ (d) $50\ln(2)$ (e) $\frac{5\ln(.01)}{\ln(.5)}$

- 4. If a > 0 and $\cosh(a) = 2$, find $\sinh(a)$.
 - (a) $\sqrt{5}$ (b) $\sqrt{3}$ (c) 1/2 (d) $\sqrt{2}$

- (e) 1

- 5. Simplify $\frac{\log_{10}(50)}{1 + \log_{10}(5)}$.
 - (a) $\log_{10}(5)$

(b) 1

(c) $\frac{1}{\log_{10}(5)}$

(d) $\frac{1}{2}$

(e) $\frac{1}{1 - \log_{10}(5)}$

- 6. Let $f(x) = x + \sqrt{x}$ for $x \ge 0$. Find $(f^{-1})'(2)$.
 - (a) 1

- (b) 3/4 (c) 1/2 (d) 2/3 (e) 1/3
- 7. Use a trigonometric substitution to evaluate $\int_{1}^{\sqrt{3}} \frac{1}{r^2\sqrt{1+r^2}} dx$.
- (a) $1 \frac{1}{\sqrt{3}}$ (b) $\frac{\sqrt{3}}{\sqrt{2}}$ (c) $\sqrt{2} \frac{2}{\sqrt{3}}$ (d) $\frac{\sqrt{3}}{\sqrt{2}} 1$ (e) $1 \frac{1}{\sqrt{2}}$

- 8. Determine the *largest* interval around 0 where $f(x) = \sin(x) + \cos(x)$ is one-to-one.

 - (a) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ (b) $\left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right]$ (c) $\left[-\frac{3\pi}{4}, \frac{\pi}{4} \right]$ (d) $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ (e) $\left[-\frac{2\pi}{3}, \frac{\pi}{3} \right]$

- 9. Evaluate $\int_0^{\pi/2} \sin^7(x) \cos^3(x) dx.$
 - (a) 1/4
- (b) 1/32
- (c) 1/40
- (d) 1/20
- (e) 1/8

- 10. Compute $\frac{d}{dx}\cos(x)^x$.
 - (a) $\cos(x)^x(\ln(\cos(x)) x\tan(x))$
- (b) $x \cos(x)^{x-1}$
- $(c) \sin(x)^x + \cos(x)^x \ln(\cos(x))$
- (d) $\cos(x)^x(\ln(\cos(x)) x\sin(x))$

(e) $-x\cos(x)^{x-1}\sin(x)$

- 11. Evaluate $\int_0^1 \frac{x}{1+x^4} \, dx.$

- (a) $\frac{\pi}{8}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{3\pi}{4}$ (e) $\frac{3\pi}{2}$

- 12. Calculate $\lim_{x\to 0^+} \ln(x)\sin(x)$.
 - (a) $-\infty$ (b) 1
- (c) e
- (d) 0
- (e) 1/e