Answer Key 1

Practice Exam 1.2

September 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

MATH 10560: Calculus II

- 1. a b c d •
- 7. a c d e
- 2. a | b | c | | e
- 8. a b d e
- 3. a c d e
- 9. a b c d •
- 4. a c d e
- 10. a b c d •
- 5. a b c e
- 11. a b c d •
- 6. b c d e
- 12. | a | | b | | c | | | | e

MATH 10560: Calculus II

Practice Exam 1.2

September 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

- 1. a b c d e
- 7. a b c d e
- 2. a b c d e
- 8. a b c d e
- 3. a b c d e
- 9. a b c d e
- 4. a b c d e
- 10. a | b | c | d | e
- 5. a b c d e
- 11. a b c d e
- 6. a b c d e
- 12. a b c d e

- 1. If $f(x) = x^3 + \sin(2x) + \cos(x)$, find $(f^{-1})'(1)$.
 - (a) $\frac{1}{6}$

- (b) $\frac{1}{3+2\cos(1)+\sin(1)}$ (c) $\frac{1}{3}$
- (d) $3 + 2\cos(1) + \sin(1)$ (e) $\frac{1}{2}$
- 2. Use integration by parts to evaluate $\int x \tan^{-1}(x) dx$.
 - (a) $\frac{1}{2}x^2 + \tan^{-1}(x) + C$

- (b) $\frac{x}{1+x^2} \tan^{-1}(x) + C$
- (c) $\frac{1}{2}x^2 \tan^{-1}(x) \tan^{-1}(x) + C$
- (d) $\frac{1}{2}(x^2+1)\tan^{-1}(x) \frac{x}{2} + C$
- (e) $\frac{1}{2}x^2 \tan^{-1}(x) + \frac{x}{2} + C$
- 3. Compute $\lim_{x\to\infty} \left(1+\frac{a}{x}\right)^x$ where a is a constant.
 - (a) a/e
- (b) e^a (c) e^{-a}
- (d) 1
- (e) 0

- 4. Find the slope of the tangent line to $y = \cosh^{-1}(x)$ at x = 2.

- (a) $\frac{e^2 e^{-2}}{2}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{1}{\sqrt{5}}$ (d) $\frac{e^2 + e^{-2}}{2}$ (e) $\frac{1}{2}$

- 5. Find the limit $\lim_{x\to 0^+} \tan^{-1}(\ln x)$.
 - (a) π
- (b) $-\pi$ (c) 0
- (d) $-\pi/2$ (e) $\pi/2$

- 6. Evaluate the integral $\int_{1}^{2} \frac{dx}{x^{2}\sqrt{x^{2}+1}}$.

 - (a) $\sqrt{2} \sqrt{5}/2$ (b) $1/\sqrt{2} 1/\sqrt{5}$
- (c) $\sqrt{5}/2-1$

- (d) $1 1/\sqrt{2}$
- (e) $\sqrt{5} \sqrt{2}$
- 7. Evaluate $\int_0^{\ln(3)} \frac{e^x}{e^x + 1} dx.$

- (a) $\frac{4}{\ln(2)}$ (b) $\ln(2)$ (c) $\frac{1}{\ln(4)}$ (d) $\frac{1}{\ln(3/2)}$ (e) $\ln(3)$

- 8. Integrate $\int_0^{\pi} \sin^3(x) dx$.
 - (a) 1/4
- (b) 1/3 (c) 4/3
- (d) 0
- (e) 1

- 9. Calculate $\frac{d}{dx}\sqrt{x}^{\sqrt{x}}\Big|_{x=4}$.
 - (a) $4(\ln(2) + 1)$
- (b) $(\ln(2) + 2)/4$
- (c) 2

(d) 1

- (e) ln(2) + 1
- 10. A beaker of water at 100° C cools to 40° C in 30 minutes in a room with temperature 20° C. Determine the temperature of the water after t minutes.
 - (a) $20 + 100e^{t/30}$
- (b) $20 + 80e^{-30t \ln(.4)}$ (c) $100e^{t \ln(.4)/30}$

- (d) $100e^{-30t\ln(.25)}$
- (e) $20 + 80e^{t \ln(.25)/30}$
- 11. Find the largest interval around x=0 where the function $f(x)=x+2\sin(x)$ is one-to-one.
 - (a) $\left[-\frac{5\pi}{6}, \frac{5\pi}{6} \right]$ (b) $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right]$ (c) $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ (d) $\left[-\frac{\pi}{6}, \frac{\pi}{6} \right]$ (e) $\left[-\frac{2\pi}{3}, \frac{2\pi}{3} \right]$

- 12. If $f(x) = \ln \sqrt{\frac{9-x}{5+x}}$, find f'(2).
 - (a) 1/4
- (b) 1

- (c) $\sqrt{5}/3$ (d) -1/7 (e) $-\sqrt{5}/6$