Answer Key 1

Practice Exam 2.1

October 28, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

MATH 10560: Calculus II

- 1. a b c e
- 7. b c d e
- 2. a b d e
- 8. a b c d •
- 3. a b d e
- 9. | a | b | | d | e
- 4. a c d e
- 10. a | b | c | | e
- 5. a c d e
- 11. a b c d •
- 6. a b c d •
- 12. a b c d •

MATH 10560: Calculus II

Practice Exam 2.1

October 28, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

- 1. a b c d e
- 7. a b c d e
- 2. a b c d e
- 8. a b c d e
- 3. a b c d e
- 9. a b c d e
- 4. a b c d e
- 10. a | b | c | d | e
- 5. a b c d e
- 11. a b c d e
- 6. a b c d e
- 12. a b c d e

- 1. Find the limit of the sequence $\frac{2^n + (-1)^n}{2^{2n}}$.
 - (a) diverges
- (b) 1/2
- (c) 1
- (d) 0
- (e) 1/4

- 2. Evaluate $\int_0^1 \frac{dx}{(x+1)\sqrt{x}}$.
 - (a) 1/4
- (b) 1/2
- (c) $\pi/2$ (d) $\pi/8$
- (e) 1
- 3. Determine which integral gives the length of the curve $x = y + e^y$, $0 \le y \le 1$.
 - (a) $\int_0^1 \sqrt{1 + \frac{1}{(t+1)^2}} dt$ (b) $\int_0^1 \sqrt{1 + e^{2t}} dt$ (c) $\int_0^1 \sqrt{2 + 2e^t + e^{2t}} dt$

- (d) $\int_0^1 1 + e^t dt$ (e) $\int_0^1 \sqrt{2 + \frac{1}{(t+2)^2}} dt$
- 4. Find the area of the surface obtained by rotating the curve $y = \frac{1}{3}x^3$, $0 \le x \le 1$, about the x-axis.
 - (a) $\frac{\pi}{4}\sqrt{2}$

- (b) $\frac{\pi}{9}(2\sqrt{2}-1)$ (c) $\frac{2\pi}{3}\sqrt{2}$

- (d) $\frac{2\pi}{3}(\sqrt{2}-1)$
 - (e) $\frac{\pi}{12}(3\sqrt{2}-2)$
- 5. Determine the values of r for which the function $y = e^{rx}$ satisfies the differential equation 2y'' - y' - 3y = 0.

- (a) 1, -2/3 (b) 3/2, -1 (c) 3, -2 (d) 3, -1 (e) 1/2, -3

- 6. A room contains 800 cubic feet of air, and 15% (= 120 cubic feet) of that air is oxygen. Fresh air with 20% oxygen is pumped into the room at a rate of 2 cubic feet per second and the well-circulated air flows out at the same rate. Find the amount of oxygen (in cubic feet) in the room after t seconds.
 - (a) $160 120e^{-t/200}$
- (b) $80 + 40e^{-t/200}$
- (c) $120 80e^{-t/800}$

- (d) $100 + 20e^{-t/400}$
- (e) $160 40e^{-t/400}$
- 7. Determine the values of p for which $\int_0^1 \frac{dx}{(1-x)^p}$ converges.

- (a) p < 1 (b) $p \ge 0$ (c) $p \le 0$ (d) $0 \le p < 1$ (e) p > 1

- 8. Use partial fractions to evaluate $\int_0^1 \frac{dx}{x^2 + 9x + 20}$.
 - (a) $\ln(2/3)$
- (b) $\ln(3/2)$
- (c) $\ln(5/6)$
- (d) $\ln(5/4)$ (e) $\ln(25/24)$

- 9. Give the error bound for the Midpoint Rule approximation of $\int_a^b f(x) dx$ using n subintervals.

 - (a) $\frac{K(b-a)^3}{12n^3}$ (b) $\frac{K(b-a)^4}{16n^2}$ (c) $\frac{K(b-a)^3}{24n^2}$ (d) $\frac{K(b-a)^4}{18n^3}$ (e) $\frac{K(b-a)^5}{180n^4}$

- 10. Determine which expression gives the general form of the partial fraction decomposition of $\frac{3x+1}{x^5+2x^3+x}.$
 - (a) $\frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{E}{x}$

(b) $\frac{A}{x+2} + \frac{Bx+C}{(x+1)^2} + \frac{E}{x}$

(c) $\frac{A}{x+2} + \frac{B}{x+1} + \frac{E}{x}$

(d) $\frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2} + \frac{E}{x}$

(e) $\frac{Ax+B}{(x^2+1)^2} + \frac{E}{x}$

- 11. Evaluate $\int_{1}^{\infty} \frac{dx}{(4x+3)^2}.$
 - (a) 1/14
- (b) 1/4
- (c) ∞
- (d) 1/42
- (e) 1/28

- 12. Find the centroid of the triangle with vertices (0,0), (1,0), (1,1).
- (a) $\left(\frac{4}{5}, \frac{3}{5}\right)$ (b) $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $\left(\frac{3}{4}, \frac{1}{2}\right)$ (d) $\left(\frac{5}{6}, \frac{2}{3}\right)$ (e) $\left(\frac{2}{3}, \frac{1}{3}\right)$