Answer Key 1

Practice Exam 3.1

November 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

MATH 10560: Calculus II

- 1. a b d e
- 7. a c d e
- 2. a c d e
- 8. b c d e
- 3. a b c d •
- 9. a b c e
- 4. a c d e
- 10. a | b | c | d | •
- 5. a c d e
- 11. a b c e
- 6. a b d e
- 12. a b d e

MATH 10560: Calculus II

Practice Exam 3.1

November 23, 2009

Record your answers to the multiple choice problems by placing an \times through one letter for each problem on this page. There are 12 multiple choice questions worth 7 points each. You start with 16 points.

You may not use a calculator.

- 1. a b c d e
- 7. a b c d e
- 2. a b c d e
- 8. a b c d e
- 3. a b c d e
- 9. a b c d e
- 4. a b c d e
- 10. a | b | c | d | e
- 5. a b c d e
- 11. a b c d e
- 6. a b c d e
- 12. a b c d e

- 1. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-2)^{2n}}{n!}.$
 - (a) $\cos(2)$ (b) $\frac{1}{e^4}$ (c) e^4 (d) $\sin(2)$ (e) $\frac{1}{5}$

- 2. Find the Taylor series of $f(x) = e^{3x}$ centered at a = 1.
 - (a) $\sum_{n=0}^{\infty} \frac{1}{n!} (3x)^n$
- (b) $\sum_{n=0}^{\infty} \frac{3^n e^3}{n!} (x-1)^n$ (c) $\sum_{n=0}^{\infty} \frac{1}{n!} (3x-1)^n$

- (d) $\sum_{n=0}^{\infty} \frac{3^n}{n!} (x-1)^n$ (e) $\sum_{n=0}^{\infty} \frac{e^3}{n!} x^n$

- 3. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{2^n}{n^2} x^{2n}$.
 - (a) 1

- (b) ∞ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$ (e) $\frac{1}{\sqrt{2}}$

- 4. Determine which statement applies to $\sum_{n=2}^{\infty} \frac{1+\sqrt{n}}{\sqrt{n^4-n^2-1}}.$
 - (a) diverges by the Comparison Test with $\sum_{n=2}^{\infty} \frac{1}{n}$
 - (b) converges by the Limit Comparison Test with $\sum_{n=2}^{\infty} \frac{1}{n^{3/2}}$
 - (c) converges by the Ratio Test
 - (d) diverges by the Integral Test
 - (e) diverges by the Root Test
- 5. Determine which statement applies to $\sum_{n=0}^{\infty} \frac{(-10)^{3n}}{(n+1)^n}.$
 - (a) diverges

- (b) converges absolutely
- (c) partial sums are increasing
- (d) is not alternating

- (e) converges conditionally
- 6. Use the binomial series to expand $\sqrt{1+x^3}$ as a power series.
 - (a) $1 \frac{1}{2}x^3 + \frac{1}{8}x^4 \frac{1}{16}x^5 + \cdots$
- (b) $1 + \frac{1}{2}x^3 + \frac{1}{4}x^6 + \frac{1}{8}x^9 + \cdots$
- (c) $1 + \frac{1}{2}x^3 \frac{1}{8}x^6 + \frac{1}{16}x^9 \cdots$
- (d) $1 + \frac{1}{2}x^3 + \frac{1}{4}x^4 + \frac{1}{16}x^5 + \cdots$
- (e) $1 + \frac{1}{2}x^3 \frac{1}{4}x^6 + \frac{1}{8}x^9 \cdots$

- 7. Estimate the error of approximating $\sum_{n=1}^{\infty} \frac{1}{n^5}$ by the first 10 terms.

 - (a) 5×10^{-4} (b) 2.5×10^{-5} (c) 2×10^{-4} (d) 10^{-5}
- (e) 3.34×10^{-3}

- 8. Evaluate $\int \cos(x^2) dx$ as a power series.
 - (a) $C + x \frac{1}{2! \cdot 5} x^5 + \frac{1}{4! \cdot 9} x^9 \frac{1}{6! \cdot 13} x^{13} + \cdots$
 - (b) $C + \frac{1}{2}x^2 \frac{1}{3! \cdot 4}x^4 + \frac{1}{5! \cdot 6}x^6 \frac{1}{7! \cdot 8}x^8 + \cdots$
 - (c) $C + x \frac{1}{2! \cdot 3} x^3 + \frac{1}{4! \cdot 5} x^5 \frac{1}{6! \cdot 7} x^7 + \cdots$
 - (d) $C + x \frac{1}{2! \cdot 3} x^3 + \frac{1}{4! \cdot 7} x^3 \frac{1}{6! \cdot 11} x^{11} + \cdots$
 - (e) $C + \frac{1}{2}x^2 \frac{1}{2! \cdot 3}x^3 + \frac{1}{3! \cdot 4}x^4 \frac{1}{4! \cdot 5}x^5 + \cdots$

- 9. Determine which series converge. (I) $\sum_{n=2}^{\infty} \frac{\ln(n)}{n^2}$ (II) $\sum_{n=1}^{\infty} \frac{n}{n!+1}$
- (III) $\sum_{n=0}^{\infty} (-1)^n \frac{n}{n+10}$

- (a) I, II, III
- (b) I
- (c) II, III
- (d) I, II
- (e) II

- 10. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2^n + (-1)^n}{3^n}.$
 - (a) 3/2
- (b) 5/2
 - (c) 3
- (d) 15/4 (e) 7/4

- 11. Determine which statements are true.
 - (I) If $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} a_n$ converges.
 - (II) If $0 \le a_n \le b_n$, for all n, then $\sum_{n=1}^{\infty} a_n$ converges if and only if $\sum_{n=1}^{\infty} b_n$ converges.
 - (III) For a continuous decreasing function $f(x) \ge 0$, $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) dx \text{ converges.}$
 - (a) I, II, III
- (b) II, III
- (c) I, II
- (d) III
- (e) I, III

- 12. Use Taylor's Inequality to determine the minimum number of terms in the Maclaurin series for $\ln(1-x)$ that are needed to estimate $\ln(0.5)$ to within 0.01.
 - (a) 200
- (b) 40
- (c) 100
- (d) 50
- (e) 25