REVIEW FOR EXAM 2

Partial Fractions. 1. Divide $\frac{P(x)}{Q(x)} = S(x) + \frac{R(x)}{Q(x)}$ 2. Factor $Q(x) = (x - a_1) \cdots (x - a_n)$, rewrite $\frac{R(x)}{Q(x)} = \frac{A_1}{x - a_1} + \cdots + \frac{A_n}{x - a_n}$ 3. An irreducible quadratic factor $x^2 + bx + c$ contributes $\frac{Ax + B}{x^2 + bx + c}$ 4. A repeated factor $(x - a)^k$ contributes $\frac{A_1}{x - a} + \cdots + \frac{A_k}{(x - a)^k}$ 5. A repeated irr quadratic factor $(x^2 + bx + c)^k$ contributes $\frac{A_1x + B_1}{x^2 + bx + c} + \cdots + \frac{A_kx + B_k}{(x^2 + bx + c)^k}$

Strategy for Integration.

- 1. Know standard "targets"
- 2. Algebraic or trig simplifications
- 3. Simple substitutions
- 4. Classify by form
 - a. trig functions: rewrite as $f(\cos(x))\sin(x)$, $f(\sin(x))\cos(x)$, $f(\tan(x))\sec^2(x)$, $f(\sec(x))\sec(x)\tan(x)$
 - b. rational functions: use partial fractions
 - c. products of different types, or inverse functions: use integration by parts $\int u \, dv = uv \int v \, du$.
 - d. $\sqrt{\pm x^2 \pm a^2}$: use a trig substitution (draw a triangle).

Approximate Integration.

1. Midpoint Rule: $\int_{a}^{b} f(x) dx \approx M_{n} = \Delta x [f(\overline{x}_{1}) + f(\overline{x}_{2}) + \dots + f(\overline{x}_{n})] (\Delta x = (b-a)/n, \overline{x}_{i} \text{ is the midpoint of the } i\text{-th interval}) Error bound: <math>|E_{M}| \leq \frac{K_{2}(b-a)^{3}}{24n^{2}} (|f''(x)| \leq K_{2})$ 2. Simpson's Rule: $\int_{a}^{b} f(x) dx \approx S_{n} = \frac{\Delta x}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$ (*n* even, x_{i} is an endpoint of the *i*-th interval) Error bound: $|E_{S}| \leq \frac{K_{4}(b-a)^{5}}{180n^{4}} (|f^{(4)}(x)| \leq K_{4})$ **Improper Integrals.** 1. $\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx, \text{ etc.}$ 2. If f(x) not defined at x = b, $\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(x) dx, \text{ etc.}$ 3. Comparison Theorem: If $0 \leq f(x) \leq g(x)$, then $\int_{a}^{\infty} f(x) dx = \infty \text{ (diverges)} \Rightarrow \int_{a}^{\infty} g(x) dx = \infty.$ Arc Length and Surface Area. A piece of arc length is $ds = \sqrt{dx^{2} + dy^{2}}$. 1. The total arc length of a graph y = f(x), $a \leq x \leq b$, or x = g(y), $c \leq y \leq d$, is $L = \int ds = \int_{a}^{b} \sqrt{1 + f'(x)^{2}} dx$ or $L = \int_{c}^{d} \sqrt{g'(y)^{2} + 1} dy$

2. The area of a surface of revolution is $A = \int 2\pi r \, ds$. If rotated about the x-axis, then r = y = f(x) and $A = \int_{a}^{b} 2\pi f(x)\sqrt{1 + [f'(x)]^2} \, dx$ or $A = \int_{c}^{d} 2\pi y\sqrt{[g'(y)]^2 + 1} \, dy$. 3. If rotated about the y-axis, then r = x = g(y) and $A = \int_{a}^{b} 2\pi x\sqrt{1 + [f'(x)]^2} \, dx$ or $A = \int_{c}^{d} 2\pi g(y)\sqrt{[g'(y)]^2 + 1} \, dy$. Moments and Centroids. Let R be the region $g(x) \le y \le f(x)$, $a \le x \le b$, with density ρ and area A. Mass: $m = \int_{a}^{b} \rho[f(x) - g(x)] dx = \rho A$, Centroid: $(\overline{x}, \overline{y})$ where $\overline{x} = \frac{M_y}{m}$, $\overline{y} = \frac{M_x}{m}$ Moments: $M_x = \rho \int_{a}^{b} \frac{1}{2} [f(x)^2 - g(x)^2] dx$, $M_y = \rho \int_{a}^{b} x [f(x) - g(x)] dx$ Theorem of Pappus: The volume of a solid of revolution is $V = A \cdot d$, where d is the distance traveled by the

Theorem of Pappus: The volume of a solid of revolution is $V = A \cdot d$, where d is the distance traveled by the centroid of R. Also, $V = 2\pi M_x$ (about x-axis) or $V = 2\pi M_y$ (about y-axis) with $\rho = 1$.

Differential Equations.

1. Know what a differential equation is, how to check a function is a solution, how to use initial conditions to solve for constants, how to derive general properties of a solution from the equation.

2. To solve a differential equation: separate the variables, integrate, and solve for y.

3. Orthogonal Trajectories: Derive a differential equation for the given family of curves, y' = F(x, y), without unknown constants. The orthogonal trajectories must satisfy y' = -1/F(x, y).

4. Mixing Problems: Let y be the amount of a substance in a solution. If the substance flows in at a constant rate a, and flows out at a rate proportional to y, then $\frac{dy}{dt} = a - by$. Often, $a = r \cdot c$ and b = r/s where r is the constant rate of flow in and out, c is the concentration of the input, and s is the amount of solution.

Sequences. A sequence is an ordered list of numbers $a_1, a_2, \ldots, a_n, \ldots$, i.e., a function defined for positive integers, $a_n = f(n), n = 1, 2, \ldots$. It converges if the limit $\lim_{n \to \infty} a_n$ exists. Know how to compute such limits. A sequence a_n is monotonic if it is always increasing or always decreasing. It is bounded if there is a constant M such that $|a_n| \leq M$ for all n. A bounded monotonic sequence always converges.

Series.
$$s = a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n = \lim_{m \to \infty} s_m$$
, where s_m is the partial sum,
 $s_m = a_1 + a_2 + \dots + a_m = \sum_{n=1}^{m} a_n$. The remainder is $R_m = a_{m+1} + a_{m+2} + \dots = \sum_{n=m+1}^{\infty} a_n$.
 s_m approximates $s = s_m + R_m$ with error R_m .
Geometric Series: $\sum_{n=k}^{\infty} ar^n = \frac{ar^k}{1-r}$ if $|r| < 1$, diverges otherwise.

Telescoping Series: Cancel terms in the partial sum s_m (possibly after using partial fractions on a_n) before taking limit.