Symplectic capacities of domains in \mathbb{C}^2

R. Hind

October 10, 2005

1 Introduction

In his paper [3] M. Gromov proved his celebrated non-squeezing theorem. We will study domains D in \mathbb{C}^2 with standard coordinates (z_1, z_2) and projections π_1 and π_2 onto the z_1 and z_2 planes respectively. The standard symplectic form on \mathbb{C}^2 is $\omega = \frac{i}{2} \sum_{j=1}^{2} \, dz_j \wedge d\bar{z}_j$ and this restricts to a symplectic form on the balls $B(r) = \{ |z_1|^2 + |z_2|^2 < r^2 \}$. In this notation Gromov’s non-squeezing theorem states that if $\text{area}(\pi_1(D)) \leq C$ and there exists a symplectic embedding $B(r) \to D$ then $\pi r^2 \leq C$. Nowadays this can be rephrased as saying that the Gromov width of D is at most C. Of course this is sharp when D is a cylinder $\{ |z_1| < r \}$.

For general D it is natural to ask whether we can estimate the Gromov width instead in terms of the cross-sectional areas $\text{area}(D \cap \{ z_2 = b \})$. But for any $\epsilon > 0$ there exists a construction of F. Schlenk, [4], of a domain D lying in a cylinder $\{ |z_1| < 1 \}$ with Gromov width at least $\pi - \epsilon$ but with all cross-sections having area less than ϵ. At least if we drop the condition on the domain lying in the cylinder, the cross-sections can even be arranged to be star-shaped, see [5]. Nevertheless in this note we will obtain such an estimate in terms of the areas of the cross-sections for domains whose cross-sections are all starshaped about the axis $\{ z_1 = 0 \}$.

Theorem 1 Let $D \subset \mathbb{C}^2$ be a domain whose cross-sections $D \cap \{ z_2 = b \}$ are star-shaped about center $z_1 = 0$. Define $C = \sup_b \text{area}(\{ z_2 = b \} \cap D)$. Then if
$B(r) \to D$ is a symplectic embedding we have $\pi r^2 \leq C$. In other words, D has Gromov width at most C.

In section 2 we will establish an estimate on the Gromov width for such domains D. This is combined with a symplectic embedding construction to obtain our result in section 3.

The author would like to thank Felix Schlenk for patiently answering many questions.

2 Embedding estimate

Here we prove the following theorem.

Theorem 2 Fix constants $0 < K \leq M$ and $0 < t < 1$. Let $D \subset \mathbb{C}^2$ be a domain of the form $D = \{ r < c(\theta, z_2), |z_2| < M \}$ where (r, θ) are polar coordinates in the z_1 plane and $c(\theta, z_2)$ is a real-valued function satisfying $t \leq c(\theta, z_2) \leq 1$ and $|\frac{\partial c}{\partial z_2}| \leq \frac{1}{K}$.

Define $C = \sup_b \text{area}(\{z_2 = b\} \cap D)$. Then if $B(r) \to D$ is a symplectic embedding of the standard ball of radius r in \mathbb{C}^2 we have $\pi r^2 < C + 3\sqrt{\frac{M}{tK}}$.

Its key implication for us is the following.

Corollary 3 Let $D = \{ r < c(\theta, z_2), |z_2| < M \} \subset \mathbb{C}^2$ and $C = \sup_b \text{area}(\{z_2 = b\} \cap D)$. For any $L > 0$ the domain D is a symplectic manifold with symplectic form $\omega_L = \frac{1}{2} (dz_1 \wedge d\bar{z}_1 + Ldz_2 \wedge d\bar{z}_2)$. Let $r > 0$ with $\pi r^2 > C$. Then for all L sufficiently large the symplectic manifold (D, ω_L) does not admit a symplectic embedding of the ball $B(r)$.

This follows by rescaling. Note above that the volume of (D, ω_L) approaches infinity as $L \to \infty$.

Proof of Theorem 2

We consider the symplectic manifold $S^2 \times \mathbb{C}$ with a standard product symplectic form $\omega = \omega_1 \oplus \omega_2$ and still use coordinates (z_1, z_2), where z_1 now extends
from \mathbb{C} to give a coordinate on the $S^2 = \mathbb{CP}^1$ factor. Still π_1 and π_2 denote the projections onto the coordinate planes. Let F be the area of the first factor, we suppose that this is sufficiently large that the complement of $\{z_1 = \infty\}$ can be identified with a neighborhood of $|z_1| \leq 1$ in \mathbb{C}^2, the identification preserving the product complex and symplectic structures. In other words, from now we assume that $D \subset S^2 \times \mathbb{C} \setminus \{z_1 = \infty\}$ and satisfies the conditions on its cross-sections. Let D^c denote the complement of D in $S^2 \times \mathbb{C}$.

Now let $\phi : B(r) \to D$ be a symplectic embedding. Then we consider almost-complex structures J on $S^2 \times \mathbb{C}$ which are tamed by ω and coincide with the standard product structure on D_c. By now it is well-known, see [3], that for all such J the almost-complex manifold $S^2 \times \mathbb{C}$ can be foliated by J-holomorphic spheres. In $\{|z_2| \geq M\}$ the foliation simply consists of the S^2 factors.

Let S denote the image of the holomorphic curve in our foliation passing through $\phi(0)$. By positivity of intersections S intersects $\{z_1 = \infty\}$ in a single point, say $\{z_2 = b\}$. As above we will use polar coordinates (r, θ) in the plane $\{z_2 = b\}$. So we can write $D \cap \{z_2 = b\} = \{r \leq c(\theta, b) := c(\theta)\}$. Let $A = \text{area}(\{z_2 = b\} \cap D)$. We intend to obtain lower bounds for both $\int_{S \cap D^c} \omega_1$ and $\int_{S \cap D^c} \omega_2$.

First of all, we will suppose that $\pi_1(S \cap D^c) = \{r \geq g(\theta)\}$ for a positive function g and that $S \cap D^c$ is a graph $\{z_2 = u(z_1)\}$ over this region. We explain later how essentially the same proof applies to the general case. Recall that our assumptions imply that $t \leq c(\theta), g(\theta) \leq 1$ for all θ. Define $h(\theta) = |g(\theta) - c(\theta)|$.

Define a holomorphic function $f : \{r \leq \frac{1}{|g(\theta)|}\} \to \{|z_2| \leq M\}$ by $f(z) = u(\frac{1}{z})$. Then $f(0) = b$ and $|f(z)| \leq M$ for all z. Therefore composing f with a translation we can redefine f as a function $f : \{r \leq \frac{1}{|g(\theta)|}\} \to \{|z_2| \leq 2M\}$ with $f(0) = 0$.

As $g(\theta) \leq 1$ for all θ the map f restricts to one from $\{|z| \leq 1\}$ and so by the Schwarz Lemma, if $|z| < 1$ we have $|f'(z)| \leq \frac{2M}{1-|z|}$. On the boundary of the disk, our assumptions on the boundary of D imply that $|f(\frac{1}{|g(\theta)|} e^{i\theta})| \geq Kh(\theta)$.
Now we estimate

\[
\int_{S \cap D^c} \omega_2 = \text{area(image}(f))
\]

\[
= \int_0^{2\pi} d\theta \int_0^{\frac{1}{1-r}} r|f'(z)|^2 dr
\]

\[
= \int_0^{2\pi} g(-\theta) d\theta \left(\int_0^{\frac{1}{1-r}} r|f'(z)|^2 dr \right) \left(\int_0^{\frac{1}{1-r}} dr \right)
\]

\[
\geq t \int_0^{2\pi} d\theta \left(\int_0^{\frac{1}{1-r}} r^{1/2} |f'(z)| dr \right)^2.
\]

Now

\[
\int_0^{\frac{1}{1-r}} |f'(z)| dr \geq Kh(\theta)
\]

and over all such functions $|f'(z)|$ the final integral above is minimized by taking $|f'(z)|$ as large as possible for small values of r. We compute

\[
\int_0^{y} \frac{2M}{1-r} dr = Kh(\theta)
\]

when $y = 1 - e^{-\frac{Kh(\theta)}{2\pi}} < \frac{1}{g(-\theta)}$. Therefore putting $y = x^2$ we have

\[
t \int_0^{2\pi} d\theta \left(\int_0^{\frac{1}{1-r}} r^{1/2} |f'(z)| dr \right)^2 \geq t \int_0^{2\pi} d\theta \left(\int_0^{x^2} \frac{2M}{1-r} \left(\frac{2M \sqrt{r}}{1-r} \right) dr \right)^2
\]

\[
= 4M^2 t \int_0^{2\pi} d\theta \left(\left[-2\sqrt{r} + \ln \left(\frac{1 + \sqrt{r}}{1 - \sqrt{r}} \right) \right]_0^{x^2} \right)^2
\]

\[
= 4M^2 t \int_0^{2\pi} d\theta \left(-2x + \ln \left(\frac{1 + x}{1 - x} \right) \right)^2
\]

\[
\geq 4M^2 t \int_0^{2\pi} \frac{4x^6}{9} d\theta
\]

for the final estimate using the fact that $0 < x < 1$.

Now

\[
x^2 = 1 - e^{-\frac{Kh(\theta)}{2\pi}} \geq (1 - e^{-\frac{1}{2}}) \frac{Kh(\theta)}{M}
\]

since $\frac{Kh(\theta)}{2M} \leq \frac{1}{2}$.

Therefore

\[
\int_{S \cap D^c} \omega_2 \geq 4M^2 t \int_0^{2\pi} \frac{4x^6}{9} d\theta
\]
\[\int_{S \cap D^c} \omega_1 = F - \frac{1}{2} \int_0^{2\pi} g(\theta)^2 d\theta \]
\[= F - A - \frac{1}{2} \int_0^{2\pi} (g(\theta)^2 - c(\theta)^2) d\theta \]
\[\geq F - A - \frac{1}{2} \int_0^{2\pi} (g(\theta) - c(\theta))(g(\theta) + c(\theta)) d\theta \]
\[\geq F - A - \int_0^{2\pi} h(\theta) d\theta. \]

Therefore writing \(k = \frac{16}{9} (1 - e^{-\frac{1}{2}})^3 \frac{tK^3}{M} \) we have
\[\int_{S \cap D^c} \omega \geq F - A - \frac{2}{3\sqrt{3k}} \pi \sqrt{\frac{M}{3(1 - e^{-\frac{1}{2}})^3 tK^3}}. \]

Thus \(S \cap D \) has symplectic area at most \(A + \pi \sqrt{\frac{M}{3(1 - e^{-\frac{1}{2}})^3 tK^3}} < A + 3 \sqrt{\frac{M}{tK^3}} \), since \(S \) itself has area \(F \).

We assumed above that \(\pi_1(S \cap D^c) \) is starshaped about \(z_1 = 0 \) and that \(S \cap D^c \) is a graph over this region. If the projection \(\pi_1 : S \to \pi_1(S \cap D^c) \) is a branched cover then we can define a function \(f \) as before simply choosing a suitable branch along the rays \(\{ \theta = \text{constant} \} \). The proof then applies as before. Now suppose that \(\pi_1(S \cap D^c) \) is not starshaped about \(z_1 = 0 \). Then we find the smallest possible starshaped set \(\{ r \leq g(\theta) \} \) containing the complement of \(\pi_1(S \cap D^c) \). The defining function \(g \) will then have discontinuities but this does not affect the proof which again proceeds as before.

Finally we choose a \(J \) which coincides with the push forward of the standard complex structure on the ball \(B(r) \) under \(\phi \) but remains standard outside \(D \). The part of \(S \) intersecting the image of \(\phi \) is now a minimal surface with respect to the standard pushed forward metric on the ball and so must have area at least \(\pi r^2 \), giving our inequality as required.
3 Proof of Theorem 1

For any domain $E \subset \mathbb{C}^2$ we will write $C(E) = \sup_b \text{area}(\{z_2 = b\} \cap E)$. Again we let $C = C(D)$. Arguing by contradiction suppose that $B(r) \rightarrow D$ is a symplectic embedding with $\pi r^2 > C + \epsilon$.

Let B be the image of the ball of radius r in D. We will prove Theorem 1 by finding a symplectic embedding of B into (D_1, ω_L) for all sufficiently large L, where D_1 is a domain C^0 close to D and with $C(D_1) < C(D) + \epsilon$. Such embeddings would contradict Corollary 3.

First we choose a lattice of the z_2 plane sufficiently fine that if we denote the gridsquares by G_i then $\sup_i \text{area}(\pi_1(D \cap \pi_2^{-1}(G_i))) < C(D) + \epsilon$. Then we let $D_1 = \bigcup_i \pi_1(D \cap \pi_2^{-1}(G_i)) \times G_i$, suitably smoothed.

Let $\{b_j\}$ be the vertices of our lattice. We make the following simple observation.

Lemma 4 Suppose that $B \cap \{z_2 = b_j\} = \emptyset$ for all j. Then there exists a symplectic embedding of B into (D_1, ω_L) for all sufficiently large L.

Proof It suffices to find a diffeomorphism ψ of $\mathbb{C} \setminus \{b_j\}$ which preserves the G_i and such that $\psi^*(L_0) = \omega_0$, letting $\omega_0 = dz \wedge d\overline{z}$ be the standard symplectic form. It is not hard to construct such a map, and the product of this map on the z_2 plane with the identity map on the z_1 plane gives a suitable embedding.

Given Lemma 4, to find our embedding it remains to find a symplectic isotopy of D_1 such that the image of B is disjoint from the planes $C_j = \{z_2 = b_j\}$. Equivalently we will find a symplectic isotopy of the union of the C_j, compactly supported in a neighborhood of B and moving the C_j away from B.

We may assume that the embedding of the ball of radius r extends to a symplectic embedding of a ball of radius s where s is slightly greater than r. Let U be the image of this ball and J_0 the push-forward of the standard complex structure on \mathbb{C}^2 to U under the embedding.

Lemma 5 There exists a C^0 small symplectic isotopy supported near ∂U which moves each C_j into a J_0-holomorphic curve near ∂U.

Proof Let \((x + iy, u + iv)\) be local coordinates on \(\mathbb{C}^2\). Let \(C\) be one of our curves. We may assume that in these coordinates near to the origin \(C \cap \partial U\) is the curve \(\{(x, 0, 0, 0)\}\) and therefore that nearby \(C\) is the graph over the \((x, y)\) plane of a function \(h(x, y) = (u, v)\). So \(u = v = 0\) when \(y = 0\).

There exists a constant \(k\) such that \(|u|, |v|, |\frac{\partial u}{\partial x}|\) and \(|\frac{\partial v}{\partial x}|\) are all bounded by \(k|y|\) near \(y = 0\).

Now, such a graph is symplectic provided

\[
\left| \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y} \right| < 1.
\]

We can make \(C\) holomorphic near \(\partial U\) by replacing \(h\) by \((\chi u, \chi v)\) where \(\chi\) is a function of \(y\), equal to 0 near \(y = 0\) and 1 away from a small neighborhood. The resulting graph remains symplectic provided

\[
|\chi \frac{\partial u}{\partial x} (\chi' v + \chi \frac{\partial v}{\partial y}) - \chi \frac{\partial v}{\partial x} (\chi' u + \chi \frac{\partial u}{\partial y})| < 1
\]
or rewriting

\[
|\chi^2 (\frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}) + \chi \chi' (v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x})| < 1.
\]

If we assume that \(|\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \frac{\partial u}{\partial y}| < 1 - \delta\) the graph remains symplectic if \(\chi\) is chosen such that

\[
|\chi \chi' (v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x})| < \delta
\]
which is guaranteed if \(\chi' < \frac{\delta}{k^2}\).

Since the integral \(\int_0^R \frac{\partial \psi}{\partial x} dy\) diverges a function \(\chi\) satisfying this condition while being equal to 0 near 0 and 1 away from an arbitrarily small neighborhood does indeed exist as required. The resulting surface is clearly isotopic through symplectic surfaces to the original \(C\).

We now replace the \(C_j\) by their images under the isotopy from Lemma 5. We let \(J\) be an almost-complex structure on \(U\) which is tamed by \(\omega\), coincides with \(J_0\) near \(\partial U\), and such that the \(C_j \cap U\) are \(J\)-holomorphic.

Now \((U, J)\) is an (almost-complex) Stein manifold in the sense that it admits a plurisubharmonic exhaustion function \(\phi : U \to [0, R]\). In fact, work of Eliashberg, see [1] and [2], implies that such a plurisubharmonic exhaustion exists
with a unique critical point, its minimum. Generically this will be disjoint from the C_j.

Near the boundary we can take ϕ to be the push-forward under the embedding of a function $|z|^N$ for some integer $N \geq 2$ (depending perhaps on U) and (any given) constant C. The definition of a plurisubharmonic function states that $\omega_\phi = -dd^c \phi$ is a symplectic form on U which is compatible with J (for a function f we define $d^c f := df \circ J$). We can choose C such that $\omega_\phi|_{\partial U} = \omega|_{\partial U}$ and thus by Moser’s lemma the symplectic manifolds (U, ω) and (U, ω_ϕ) are symplectomorphic via a symplectomorphism F fixing the boundary. In fact, adjusting the isotopy provided by Moser’s method we may assume that F fixes the C_j (since they are symplectic with respect to both ω and ω_ϕ). Let V denote the image of $U \setminus B$ under F and suppose that $\{\phi \geq R_0\} \subset V$.

It now suffices to find a symplectic isotopy of the C_j in (U, ω_ϕ) moving the surfaces into the region $\{\phi \geq R_0\}$. Then the preimages of these surfaces under F gives a symplectic isotopy moving them away from B as required.

Let Y be the gradient of ϕ with respect to the Kähler metric associated to ϕ. Equivalently Y is defined by $Y|_{\omega_\phi} = -d^c \phi$. Define $\chi : [0, R) \to [0, 1]$ to have compact support but satisfy $\chi(t) = 1$ for $t \leq R_0$. Then the images of the C_j under the one-parameter group of diffeomorphisms generated by $X = \chi(\phi)Y$ will eventually lie in $\{\phi \geq R_0\}$. Thus we can conclude after checking that they remain symplectic during this isotopy. We recall that the C_j are J-holomorphic and finish with the following lemma.

Lemma 6 Let G be a diffeomorphism of U generated by the flow of the vector-field X. Then $G^*\omega_\phi(Z,JZ) > 0$ for all non-zero vectors Z.

Proof For any function f we compute

$$L_X f(\phi) d^c \phi = f'(\phi)X|d\phi \wedge d^c \phi + f(\phi)X|dd^c \phi + df(\phi)X|d^c \phi$$

$$= (f'(\phi)d\phi(X) + f(\phi)\chi(\phi))d^c \phi.$$

Thus $G^*d^c \phi = g(\phi)d^c \phi$ for some function g and

$$G^*\omega_\phi = g(\phi)\omega_\phi - g'(\phi)d\phi \wedge d^c \phi.$$
The function g is certainly positive and so $G^*\omega_\phi$ evaluates positively on the (contact) planes $\{d\phi = d^c\phi = 0\}$. Therefore if $G^*\omega_\phi$ evaluates nonpositively on a J-holomorphic plane then there exists such a plane containing Y. But this is clearly not the case, as $G^*\omega_\phi(Y, JY) = \omega_\phi(G^*Y, G^*JY) = -kd^c\phi(G^*JY)$ for some positive constant k and $-d^c\phi(G^*JY) = -G^*d^c\phi(JY) = g(\phi)d\phi(Y) > 0$.

References

Richard Hind
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556
email: hind.1@nd.edu