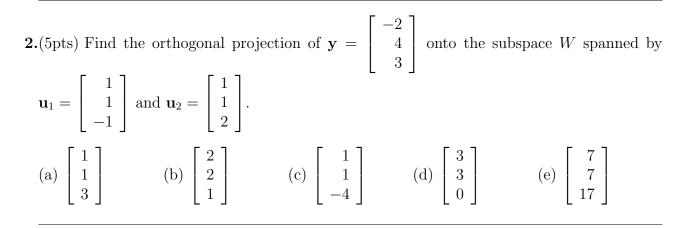
- **1.**(5pts) Let U be an $m \times n$ matrix with orthonormal columns and let $W = \operatorname{Col} U$. Determine which statement is *not* always true.
 - (a) $||U\mathbf{x}|| = 1$ for $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n (b) $U^T U = I$
 - (c) $(U\mathbf{x}) \cdot (U\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$ for \mathbf{x}, \mathbf{y} in \mathbb{R}^n (d) $\operatorname{proj}_W \mathbf{y} = UU^T \mathbf{y}$ for \mathbf{y} in \mathbb{R}^m
 - (e) The columns of U form a basis for W.



3.(5pts) Use the Gram-Schmidt process to find an orthogonal basis for the span of the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

5.(5pts) Solve the differential equation $y' + 2y = 3e^t$ subject to the initial condition y(1) = 0.

Initials: _____

(a)
$$y = e^t - e^{3-2t}$$
 (b) $y = e^{3t} - e^3$ (c) $y = e^{2t} - e^{3-t}$ (d) $y = e^t - 1$ (e) $y = e^{4t} - 1$

- **6.**(5pts) Let $\phi(x)$ be the solution of the differential equation $y' = xy^2$ satisfying $\phi(0) = 2$. Find $\phi(3)$.
- (a) -1/4 (b) 0 (c) 2/9 (d) 1/3 (e) -2/5
- **7.**(5pts) Determine the interval where the solution to the initial value problem is guaranteed to exist.

$$\cos(t)y' = y + e^{1/t}, \qquad y(\pi) = 0$$

(a) $(\pi/2, 3\pi/2)$ (b) $(0, \infty)$ (c) $(0, 3\pi/2)$ (d) $(-\pi/2, \pi/2)$ (e) (π, ∞)

8.(5pts) Suppose a certain population of red squirrels satisfies the differential equation

$$\frac{dN}{dt} = -0.05 \left(1 - \frac{N}{700}\right) \left(1 - \frac{N}{2000}\right) N$$

If the current population is 600, determine the long-term population of red squirrels predicted by this model.

(a) 0 (b) 700 (c) 2000 (d) $\ln(700)/0.05$ (e) $\ln(2000)/0.05$

9.(5pts) Find the solution to the initial value problem y'' - 5y' - 6y = 0, y(0) = 0, y'(0) = 1.

(a)
$$y = \frac{1}{7}(e^{6t} - e^{-t})$$
 (b) $y = e^{-2t} - e^{-3t}$ (c) $y = -\frac{1}{5}(e^{-2t} + e^{-3t})$
(d) $y = \frac{1}{7}(e^t - e^{-6t})$ (e) $y = \frac{1}{5}(e^{3t} + e^{2t})$

10.(5pts) Find a value for r such that $y = t^r$ is a solution of the differential equation $9t^2y'' + 12ty' - 2y = 0$.

(a) -2/3 (b) 2 (c) 3 (d) -1/6 (e) 3/4

Initials:

11. (10pts) Find the least-squares solution $\hat{\mathbf{x}}$ to $A\mathbf{x} = \mathbf{b}$ where $A =$	$\begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	and $\mathbf{b} =$	$\begin{bmatrix} 7\\-2\\3\\5\end{bmatrix}$].
---	--	--	--------------------	--	----

12.(10pts) Gases from the ground below a house seep into its 3000 ft³ basement at the rate of 2 ft³ per day. Air leaves the basement at the same rate. The incoming gases contain 5% radon. Assuming the basement is initially clear of radon gas, calculate how many days it will take for the basement to reach the dangerous level of 1% radon gas.

13.(10pts) Solve the initial value problem by first finding an integrating factor.

 $y \tan(x) dx + (y \sec(x) - 1) dy = 0, \qquad y(\pi) = 2$

Solutions

1. Since $||Uc\mathbf{x}|| = c||U\mathbf{x}||$ (a) is not always true.

 $\mathbf{2.}_{\mathbf{u}_1 \text{ and } \mathbf{u}_2 \text{ are orthogonal so}}$

$$\operatorname{proj}_{W}\left(\begin{bmatrix} -2\\4\\3 \end{bmatrix} \right) = \frac{\begin{bmatrix} -2\\4\\3 \end{bmatrix} \bullet \begin{bmatrix} 1\\1\\-1 \end{bmatrix}}{\begin{bmatrix} 1\\1\\-1 \end{bmatrix} \bullet \begin{bmatrix} 1\\1\\-1 \end{bmatrix}} \begin{bmatrix} 1\\1\\-1 \end{bmatrix} + \frac{\begin{bmatrix} -2\\4\\3 \end{bmatrix} \bullet \begin{bmatrix} 1\\1\\2 \end{bmatrix}}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \frac{1}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} \bullet \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \frac{1}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} + \frac{8}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} = \frac{1}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} = \frac{1}{\begin{bmatrix} -2\\4\\3 \end{bmatrix} + \begin{bmatrix} 2\\4\\3 \end{bmatrix} \bullet \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \frac{1}{\begin{bmatrix} 1\\1\\2 \end{bmatrix}} = \frac{1}{\begin{bmatrix} 1\\1\\3 \end{bmatrix}} = \frac{1}{\begin{bmatrix} 1\\1$$

 $\mathbf{^{3.}v}_1 = \mathbf{x}_1$

 \mathbf{v}_3

Initials: _____

4. Write it as

$$y' + \frac{-\sin(x)}{\ln(x)}y = \frac{\cos(x)}{\ln(x)}$$

shows that it is linear.

5.

The equation is linear first order so $\int 2dt = 2t$ so $\mu = e^{2t}$ and we need to do $\int 3e^t e^{2t} dt = \int 3e^{3t} dt = e^{3t} + C$ and the general solution is $y = e^{-2t}(e^{3t} + C)$. Since $y(1) = 0, 0 = e^{-2}(e^3 + C)$ so $C = e^{-3}$ and $y = e^{-2t}(e^{3t} - e^3)$.

6.

The equation is separable so $\frac{dy}{y^2} = xdx$ or $-y-1 = x^2/2 + C$. Since y(0) = 2, -1/2 = 0 + Cso $-\frac{1}{y} = \frac{x^2 - 1}{2}$ or $y = \frac{2}{1 - x^2}$. $\phi(3) = \frac{2}{1 - 3^2} = \frac{2}{-8} = -1/4$

7. The equation is linear and the standard form is

$$y' + \frac{-1}{\cos(t)}y = \frac{e^{1/t}}{\cos(t)}, \qquad y(\pi) = 0$$

We are looking for the largest open interval containing π such that $t \neq 0$ and $\cos(t) \neq 0$. That interval is $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.

⁸. The equation is autonomous and the zeros of the function are N = 0, N = 700 and N = 2000. At N = 600, $\frac{dN}{dt} < 0$ so N is decreasing. For all N between 0 and 700, $\frac{dN}{dt} < 0$ so N eventually goes to 0.

9. 2nd order linear with constant coefficients so solve $r^2 - 5r - 6 = (r - 6)(r + 1) = 0$ so the roots are $6and_2$ so the general solution is $y = c_1e^{-t} + c_2e^{6t}$ and then $y' = -c_1e^{-t} + 6c_2e^{6t}$ so $0 = y(0) = c_1 + c_2$ and $1 = y'(0) = -c_1 + 6c_2$. Hence $c_2 = 1/7$ and $c_1 = -1/7$.

6

10.

1

$$y' = rt^{r-1}$$
 and $y'' = r(r-1)t^{r-2}$ so
 $9r(r-1)t^r + 12rt^r - 2t^r = (9r^2 - 9r + 12r - 2)t^r$

which vanishes if and only if $9r^2 + 3r - 2 = (3r - 1)(3r + 2) = 0$ Hence two values of r work, r = 1/3 and r = -2/3.

11.

Solve
$$A^{T}A\mathbf{x} = A^{T}\mathbf{b}$$
. $A^{T} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$.
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 7 \\ -2 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 15 \\ 10 \end{bmatrix}$$
so solve
$$\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix} \hat{x} = \begin{bmatrix} 15 \\ 10 \end{bmatrix}$$

By inspection $\hat{x} = \begin{bmatrix} 5\\ 0 \end{bmatrix}$.

12. Let R(t) denote the total amount of radon in the air in ft³. A cubic foot of incoming gas Let R(t) denote the total amount of radon in the an in t^2 . It can be contained on the total amount of radon in the total amount of the contains $\frac{R}{3000}$ ft³ of radon. Hence $0.1 \text{ ft}^3/\text{day}$ is the amount of incoming radon per day and $\frac{2R}{3000}$ ft³ is the amount

of outgoing radon per day. Hence

$$\frac{dR}{dt} = 0.1 - \frac{R}{1500}$$

This equation is linear and in standard form is

$$R' + \frac{1}{1500}R = 0.1$$

Hence $\mu = e^{t/1500}$ and $\int 0.1e^{-t/1500} dt = 150e^{-t/1500} + C$ so $R = 150 + Ce^{-t/1500}$.

Since the basement is initially clear of radon R(0) = 0 and C = -150 and so $R = 150(1 - e^{-t/1500})$.

We are looking for the time t for which $R(t) = 0.01 \cdot 3000 = 30$ so $150(1 - e^{-t/1500}) = 30$ or $1 - e^{-t/1500} = 0.2$ or $0.8 = e^{-t/1500}$ or $-t/1500 = \ln(0.8)$ or

$$t = \frac{-\ln(0.8)}{1500} \quad \text{days}$$

With a calculator this is about 335 days.

13. $M = y \tan(x)$ and $N = y \sec(x) - 1$ so $M_y = \tan(x)$ and $N_x = y \tan(x) \sec(x)$ so $M_y - N_x = \tan(x) - y \tan(x) \sec(x) = \tan(x)(1 - y \sec(x)) = -\tan(x)N$. Hence $\frac{\mu'}{\mu} = -\tan(x)$ or $\ln|\mu| = -\ln|\cos(x)|$ so we may take $\mu = \cos(x)$. The new equation is

$$y \cos(x) \tan(x) dx + \cos(x)(y \sec(x) - 1) dy = 0, \qquad y(\pi) = 2$$

or

$$y \sin(x) dx + (y - \cos(x)) dy = 0, \qquad y(\pi) = 2$$

 $\frac{\partial \psi}{\partial x} = y \sin(x) \text{ so } \psi = -y \cos(x) + g(y).$ Then $\frac{\partial \psi}{\partial y} = -\cos(x) + g'(y) = y - \cos(x) \text{ so } g'(y) = y \text{ and } \psi = -y \cos(x) + y^2/2 \text{ Since } y(\pi) = 2$, the value of the level curve is $-2\cos(\pi) + 2^2/2 = 2 + 2 = 4$ so $-y\cos(x) + y^2/2 - = 4$ or

$$y^2 - 2y\cos(x) - 8 = 0$$

You can solve for y using the quadratic formula although you were not asked for this. If you do proceed however,

$$y = \frac{2\cos(x) \pm \sqrt{4\cos^2(x) + 32}}{2}$$

When $x = \pi$, $y = \frac{-2 \pm \sqrt{4+32}}{2} = \frac{-2 \pm 6}{2} = 2$ or -4. Since we are looking for the solution with $y(\pi) = 2$, the *unique* solution is

$$y = \frac{2\cos(x) + \sqrt{4\cos^2(x) + 32}}{2}$$