Math Reasoning, Practice Final Exam.

May 9, 2013

There are 8 questions worth 10 points each. Please write clearly and give complete proofs.

Problem 1. Find all solutions $(x, y) \in \mathbb{Z}^2$ to the equation

$$5x + 6y = 13.$$

Problem 2. Find all solutions $(x, y) \in \mathbb{Z}_8^2$ to the equation

 $5x + 6y = 13 \bmod 8.$

Problem 3.

Find all integers $x \in \mathbb{Z}$ satisfying the following.

 $x \equiv 1 \mod 13$; $x \equiv 5 \mod 23$; $x \equiv 9 \mod 15$.

Problem 4.

Let a and b be relatively prime. Show that the integers

$$0, a, 2a, \ldots, (b-1)a$$

represent all elements in \mathbb{Z}_b .

Problem 5.

Find all rational solutions $x\in \mathbb{Q}$ to the equation

$$9x^3 - 28x + 9 = 0.$$

Problem 6.

Prove that the sum

$$\sum_{k=1}^{n} \frac{1}{k^3} = \left(\frac{n(n+1)}{2}\right)^2.$$

Problem 7.

(a) Show that if 7 divides 10x then 7 divides x.

(b) Given an integer x form a smaller one y by taking the number whose decimal expansion is the one for x with the last digit removed, and then subtracting twice this last digit. For example, if x = 12345 then we take $y = 1234 - 2 \cdot 5 = 1224$.

Show that x is divisible by 7 if and only if y is divisible by 7.

Problem 8.

Let $\langle a \rangle = \{a_n\}$ be a Cauchy sequence and $\langle b \rangle = \{b_n\}$ be another sequence.

(a) If $|b_n| < 1$ for all n and $\langle a \rangle \rightarrow 0$, show that the sequence $\langle ab \rangle = \{a_n b_n\}$ is Cauchy.

(b) Show that the conclusion of part (a) may be false if $|b_n| < 1$ but < a > does not converge to 0.