
Solutions to Homework 1.

January 29, 2013

Proof of Proposition 1.43.

(a). Suppose that x + z = y + z.
Adding the additive inverse −z to both sides gives (x + z) + (−z) =

(y + z) + (−z).
Using axiom A1 this implies x+(z+(−z)) = y+(z+(−z)) and therefore

x + 0 = y + 0.
By A3 we conclude that x = y as required.

(b). For any x in the field we have

x + x.0 = x(0 + 1) = x.1 = x.

The first equality here is true by axiom DL, the second by axiom A3 and the
last by M3.

By A3 again this means that x + x.0 = x + 0. Hence using part (a) we
get x.0 = 0.

(c). For any x and y in the field we have

xy + (−x).y = (x + (−x)).y = 0.y = 0.

Now the first inequality uses axiom DL, the second is the definition of additive
inverses and the last one uses part (b).

Therefore by the definition of the inverse −(xy) = (−x).y.

(d). Putting x = 1 in (c) gives (−1).y = −(1.y) = −y. This holds for all
y in the field as required.

(e). We have

(−x)(−y) = ((−1)x)((−1)y) = ((−1)(−1))(xy)
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where the first inequality uses part (d) and the second one applied M1 and
M2.

Using part (d) again, (−1)(−1) = −(−1) = 1 as −1 is the inverse of 1.
Therefore ((−1)(−1))(xy) = 1.(xy) = xy by axiom M3. This is the

equality we need.

(f). Suppose xz = yz and z 6= 0.
As z 6= 0 there is a z−1 and multiplying by this we get (xz).z−1 = (yz).z−1.
Using M1 and the definition of z−1 this implies x.1 = y.1.
Therefore by M3 x = y as required.

(g). Suppose xy = 0.
By part (b) we have xy = x.0.
If x 6= 0 then by part (f) we have that y = 0.
Reversing the roles of x and y we also see that if y 6= 0 then x = 0.
In conclusion either x or y is 0.

Proof of Proposition 1.45.
(F1). Suppose that x ≤ y.
Since y = y + 0 = y + (z + (−z)) we then have x ≤ y + (z + (−z)) which

means y + (z + (−z)) + (−x) ≥ 0.
Using A1 and A2 we can rewrite this as (y+z)−(x+z) ≥ 0 which means

y + z ≥ x + z as required.

(F2). Suppose that x ≤ y and 0 ≤ z.
Then y − x ≥ 0 and z ≥ 0. We break the proof into two cases.
If y − x = 0 or z = 0 then (y − x).z = 0 by 1.43 part (b) and therefore

xz = yz using DL and 1.43 (c).
If neither y − x nor z are 0 then y − x > 0 and z > 0. Then by P2 we

have (y − x)z > 0 and therefore yz > xz using DL and 1.43 (c) again.
In either case we have yz ≥ xz as required.

(F3). Suppose y − x ≥ 0 and v − u ≥ 0.
We break the proof into cases.
First case: y − x > 0 and v − u > 0.
Then (y − x) + (v − u) > 0 by P1.
Rearranging using A1 this implies (y+v)−(x+u) > 0 and so y+v > x+u.
Second case: y = x and v − u ≥ 0.
Now by (F1) we have v + y ≥ u + y.
As y = x this means v + y ≥ x + u.
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Third case: y ≥ x and v = u.
Now by (F1) y + v ≥ x+ v and so as v = u we have y + v ≥ x+ u again.
As these cases cover all possibilities we are done.

(F4). Suppose 0 ≤ x ≤ y and 0 ≤ u ≤ v.
As v ≥ 0 by (F2) we have xv ≤ yv.
As x ≥ 0 by (F2) we also have xu ≤ xv.
Putting the two inequalities together implies that xu ≤ yv as required.

Problem 1.25.
Let x, y and z be the ages of the three daughters in order from youngest

to oldest. Then xyz = 36.
The divisors of 36 are 1, 2, 3, 6, 9, 12 and 18. We know that x and y

must each be one of these numbers, and their product must also be a divisor
so that z = 36/(xy) is at least as big as x and y. There are not many
possibilities. In particular if x = 3 and y ≥ 6 then z ≤ 36/18 = 2 which is
too small. Thus if x = 3 then y = 3 and in all other options x is 1 or 2.

These are the possibilities.
(1, 1, 36); (1, 2, 18); (1, 3, 12); (1, 6, 6); (2, 2, 9); (2, 3, 6); (3, 3, 4).
The sums of the ages in the seven possibilities are 38; 21; 16; 13; 13; 11;

10 respectively.
As we know that the sum is not enough to determine which age list we

have, the ages must be either (1, 6, 6) or (2, 2, 9). To decide between these we
use the final piece of information that the eldest daughter is asleep upstairs.
A 9 year old would likely be at school or awake when a census taker visits,
so we conclude that the ages are 1, 6 and 6.

Problem 1.40.
We will apply set identities (from class or exercise 1.41) starting with

(A ∪B)− (A ∩B).
By definition the set can also be written as (A∪B)∩ (A∩B)c, where the

superscript c denotes the complement.
Applying deMorgan’s law, the complement of an intersection is a union

of complements and so we can replace (A ∩B)c by Ac ∪Bc.
Next we distribute the intersection with (A ∪B) over this union to get

(A ∪B) ∩ (A ∩B)c = ((A ∪B) ∩ Ac) ∪ (A ∪B) ∩Bc).
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In each of the two brackets distribute the intersection over the union to
rewrite the set as

((A ∩ Ac) ∪ (B ∩ Ac)) ∪ ((A ∩Bc) ∪ (B ∩Bc)).

Finally we note that the intersection of any set with its complement is
empty and so our set is equal to (B ∩ Ac) ∪ (A ∩ Bc) or (B − A) ∪ (A− B)
as required.

Problem 1.55. Let F be a field with three elements 0, 1 and x.
Axioms A3 and M3 give the addition table for 0 and the multiplication

table for 1. Proposition 1.43 (b) gives the multiplication table for 0.
Thus for the multiplication table we only need to calculate x.x. Now, x

has a multiplicative inverse (since x 6= 0) and so there exists a w ∈ F with
x.w = 1. The part of the table we already know shows that w cannot be 0
or 1, hence w = x and we can complete the multiplication table.

By Proposition 1.43 (a), x + 1 = 1 + x = 0 since it cannot be 1 or x by
Proposition 1.43 (a) (this would imply that x = 1).

Proposition 1.43 (a) also implies that each column and row of the addition
table consists of three different elements. This lets us fill out the table as
shown below.
• 0 1 x
0 0 0 0
1 0 1 x
x 0 x 1

+ 0 1 x
0 0 1 x
1 1 x 0
x x 0 1


