
Solutions to Homework 10.

April 17, 2013

Problem 8.26.
The Pythagorean triples are triples of the form (2rs, r2 − s2, r2 + s2) or

(r2 − s2, 2rs, r2 + s2) for r, s ∈ Z.
We aim to show that every integer n > 2 appears in a Pythagorean triple

which does not include 0. First suppose that n is even. Then we can write
n = 2k with k > 1 and n appears in a Pythagorean triple by taking r = k
and s = 1 as the 2rs term. We just need to make sure that neither r2 − s2

nor r2 + s2 are 0. This is clear since r = k > 1 = s.
Next suppose that n is odd. Then n = 2k + 1 for some k > 1. Using the

hint n = (k + 1)2− k2 and so appears in a Pythagorean triple with r = k + 1
and s = k as the r2 − s2 term. We need to make sure that neither 2rs nor
r2 + s2 are 0, but again this is clear since r, s > 0.

Problem 8.31.
g(x) = 1

f(x)
also defines a function from Q∗ to Q∗. Also

g(x + y) =
1

f(x + y)
=

f(x) + f(y)

f(x)f(y)
= g(y) + g(x).

Iterating this formula we see that

g(nx) = g((n− 1)x) + g(x) = · · · = ng(x)

for any natural number n.
Suppose that c = f(1). Then g(1) = 1

c
. For any natural number n the

formula above implies that ng( 1
n
) = g(1) = 1

c
. Hence g( 1

n
) = 1

cn
. Using the

formula again for natural numbers n and m we get g(m
n

) = m
cn

.
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If x = −m
n

with m,n ≥ 1 then

g(1 +
m

n
) + g(

−m
n

) = g(1) =
1

c

and so g(−m
n

) = 1
c
− n+m

cn
= −m

cn
.

In general g(m
n

) = m
cn

or g(x) = x
c

for c ∈ Q∗. Therefore f(x) = 1
g(x)

= c
x
.

Problem A.7.
The sequence is defined recursively by a1 = 2 and an+1 = 1

2
(an + 2

an
) for

n ≥ 1.
Suppose that 2 < a2n < 4. Then

an+1 − an =
1

2
(an +

2

an
)− an =

1

2an
(2− a2n) < 0

and

a2n+1 =
1

4a2n
(a2n + 2)2 >

42

4 · 2
= 2.

Hence an+1 < an but still a2n+1 > 2. Arguing recursively we see that {an} is
a decreasing sequence with a2n > 2 for all n.

Suppose that < a > is not a Cauchy sequence. Then there exists a k
such that for all N we can find n > m > N with |an − am| = am − an > 1

k
.

Therefore, as < a > is decreasing, given any term am we can always find a
later term at least 1

k
smaller. Repeating this argument r times starting from

a1 we can find a term which is at most 2− r
k
. Letting r = k we find a term

less than or equal to 1, which is a contradiction as all terms have a2n > 2.
Hence < a > is a Cauchy sequence.

Finally suppose that < a > has a limit L ∈ Q. The recursion relation
implies that 2anan+1 = a2n + 2. It is easy to check that the left hand side
has limit 2L2 and the right hand side converges to L2 + 2 as n→∞. Hence
2L2 = L2 + 2 or L2 = 2. But this is a contradiction to Theorem 8.13.

Problem A.8.
The hardest thing to check here is that Cauchy sequences are closed under

multiplication. This was done in class but here is the argument again.
Suppose that < a > and < b > are Cauchy sequences.
As < a > is Cauchy there exists an N1 so that if n,m ≥ N1 we have

|an − am| < 1. Therefore, if n ≥ N1 using the triangle inequality we have



3

|an| < 1 + |aN1 |. Setting A = |aN1| we can say that |an| < 1 + A whenever
n ≥ N1.

Similarly there exists a B > 0 so that |bn| < 1 + B whenever n ≥ N2.
Let k ∈ N. Then as < a > is Cauchy there exists an N3 so that |an−am| <
1

2k(1+B)
whenever n,m ≥ N3.

Similarly as < b > is Cauchy there exists an N4 so that |bn−bm| < 1
2k(1+A)

whenever n,m ≥ N4.
Suppose that n,m ≥ N = max{N1, N2, N3, N4}. We will check that

|anbn−ambm| < 1
k
. As k was an arbitrary natural number this will show that

< ab > is Cauchy as required.
We compute

|anbn − ambm| = |anbn − ambn + ambn − ambm|

= |(an − am)bn − am(bn − bm)| ≤ |an − am||bn|+ |am||bn − bm|.

Using the fact that n,m ≥ N the final term is at most 1
2k(1+B)

· (1 + B) +
1

2k(1+A)
· (1 + A) as required.

Problem A.9.
The definition of a subsequence is on page 277.
Suppose then that < a > is a Cauchy sequence and < b > is a convergent

subsequence. So the kth term in the < b > sequence is anl
where n1 < n2 < ...

is an increasing sequence of natural numbers.
We know that < b > converges to a limit L and aim to show that < a >

also converges to L. In other words, for a given k we need to find an N so
that if n ≥ N then |an − L| < 1

k
.

Convergence of < b > means that there exists an N1 so that when nl ≥ N1

we have |anl
− L| < 1

2k
. As < a > is Cauchy we can find an N2 so that if

n,m ≥ N2 then |an − am| < 1
2k

.
Suppose that n ≥ N = max{N1, N2}. We can also choose an l so that

nl ≥ N ≥ N1. Then

|an − L| = |(an − anl
) + (anl

− L)| ≤ |an − anl
|+ |anl

− L|

by the triangle inequality. But the first term is less than 1
2k

since n, nl ≥ N2

and the second term is also less than 1
2k

since nl ≥ N−1. Hence |an−L| < 1
k

as required.


