Solutions to Homework 10.

April 17, 2013

Problem 8.26.

The Pythagorean triples are triples of the form $(2rs, r^2 - s^2, r^2 + s^2)$ or $(r^2 - s^2, 2rs, r^2 + s^2)$ for $r, s \in \mathbb{Z}$.

We aim to show that every integer n > 2 appears in a Pythagorean triple which does not include 0. First suppose that n is even. Then we can write n = 2k with k > 1 and n appears in a Pythagorean triple by taking r = kand s = 1 as the 2rs term. We just need to make sure that neither $r^2 - s^2$ nor $r^2 + s^2$ are 0. This is clear since r = k > 1 = s.

Next suppose that n is odd. Then n = 2k + 1 for some k > 1. Using the hint $n = (k+1)^2 - k^2$ and so appears in a Pythagorean triple with r = k + 1 and s = k as the $r^2 - s^2$ term. We need to make sure that neither 2rs nor $r^2 + s^2$ are 0, but again this is clear since r, s > 0.

Problem 8.31.

 $g(x) = \frac{1}{f(x)}$ also defines a function from \mathbb{Q}^* to \mathbb{Q}^* . Also

$$g(x+y) = \frac{1}{f(x+y)} = \frac{f(x) + f(y)}{f(x)f(y)} = g(y) + g(x).$$

Iterating this formula we see that

$$g(nx) = g((n-1)x) + g(x) = \dots = ng(x)$$

for any natural number n.

Suppose that c = f(1). Then $g(1) = \frac{1}{c}$. For any natural number *n* the formula above implies that $ng(\frac{1}{n}) = g(1) = \frac{1}{c}$. Hence $g(\frac{1}{n}) = \frac{1}{cn}$. Using the formula again for natural numbers *n* and *m* we get $g(\frac{m}{n}) = \frac{m}{cn}$.

If $x = \frac{-m}{n}$ with $m, n \ge 1$ then

$$g(1+\frac{m}{n}) + g(\frac{-m}{n}) = g(1) = \frac{1}{c}$$

and so $g(\frac{-m}{n}) = \frac{1}{c} - \frac{n+m}{cn} = \frac{-m}{cn}$. In general $g(\frac{m}{n}) = \frac{m}{cn}$ or $g(x) = \frac{x}{c}$ for $c \in \mathbb{Q}^*$. Therefore $f(x) = \frac{1}{g(x)} = \frac{c}{x}$.

Problem A.7.

The sequence is defined recursively by $a_1 = 2$ and $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$ for $n \ge 1$.

Suppose that $2 < a_n^2 < 4$. Then

$$a_{n+1} - a_n = \frac{1}{2}(a_n + \frac{2}{a_n}) - a_n = \frac{1}{2a_n}(2 - a_n^2) < 0$$

and

$$a_{n+1}^2 = \frac{1}{4a_n^2}(a_n^2 + 2)^2 > \frac{4^2}{4 \cdot 2} = 2$$

Hence $a_{n+1} < a_n$ but still $a_{n+1}^2 > 2$. Arguing recursively we see that $\{a_n\}$ is a decreasing sequence with $a_n^2 > 2$ for all n.

Suppose that $\langle a \rangle$ is not a Cauchy sequence. Then there exists a k such that for all N we can find n > m > N with $|a_n - a_m| = a_m - a_n > \frac{1}{k}$. Therefore, as $\langle a \rangle$ is decreasing, given any term a_m we can always find a later term at least $\frac{1}{k}$ smaller. Repeating this argument r times starting from a_1 we can find a term which is at most $2 - \frac{r}{k}$. Letting r = k we find a term less than or equal to 1, which is a contradiction as all terms have $a_n^2 > 2$. Hence $\langle a \rangle$ is a Cauchy sequence.

Finally suppose that $\langle a \rangle$ has a limit $L \in \mathbb{Q}$. The recursion relation implies that $2a_na_{n+1} = a_n^2 + 2$. It is easy to check that the left hand side has limit $2L^2$ and the right hand side converges to $L^2 + 2$ as $n \to \infty$. Hence $2L^2 = L^2 + 2$ or $L^2 = 2$. But this is a contradiction to Theorem 8.13.

Problem A.8.

The hardest thing to check here is that Cauchy sequences are closed under multiplication. This was done in class but here is the argument again.

Suppose that $\langle a \rangle$ and $\langle b \rangle$ are Cauchy sequences.

As $\langle a \rangle$ is Cauchy there exists an N_1 so that if $n, m \geq N_1$ we have $|a_n - a_m| < 1$. Therefore, if $n \geq N_1$ using the triangle inequality we have

 $|a_n| < 1 + |a_{N_1}|$. Setting $A = |a_{N_1}|$ we can say that $|a_n| < 1 + A$ whenever $n \ge N_1$.

Similarly there exists a B > 0 so that $|b_n| < 1 + B$ whenever $n \ge N_2$.

Let $k \in \mathbb{N}$. Then as $\langle a \rangle$ is Cauchy there exists an N_3 so that $|a_n - a_m| < \frac{1}{2k(1+B)}$ whenever $n, m \geq N_3$.

Similarly as $\langle b \rangle$ is Cauchy there exists an N_4 so that $|b_n - b_m| < \frac{1}{2k(1+A)}$ whenever $n, m \geq N_4$.

Suppose that $n, m \geq N = \max\{N_1, N_2, N_3, N_4\}$. We will check that $|a_n b_n - a_m b_m| < \frac{1}{k}$. As k was an arbitrary natural number this will show that $\langle ab \rangle$ is Cauchy as required.

We compute

$$|a_n b_n - a_m b_m| = |a_n b_n - a_m b_n + a_m b_n - a_m b_m|$$
$$= |(a_n - a_m)b_n - a_m (b_n - b_m)| \le |a_n - a_m||b_n| + |a_m||b_n - b_m|$$

Using the fact that $n, m \ge N$ the final term is at most $\frac{1}{2k(1+B)} \cdot (1+B) + \frac{1}{2k(1+A)} \cdot (1+A)$ as required.

Problem A.9.

The definition of a subsequence is on page 277.

Suppose then that $\langle a \rangle$ is a Cauchy sequence and $\langle b \rangle$ is a convergent subsequence. So the *k*th term in the $\langle b \rangle$ sequence is a_{n_l} where $n_1 < n_2 < \dots$ is an increasing sequence of natural numbers.

We know that $\langle b \rangle$ converges to a limit L and aim to show that $\langle a \rangle$ also converges to L. In other words, for a given k we need to find an N so that if $n \geq N$ then $|a_n - L| < \frac{1}{k}$.

Convergence of $\langle b \rangle$ means that there exists an N_1 so that when $n_l \geq N_1$ we have $|a_{n_l} - L| < \frac{1}{2k}$. As $\langle a \rangle$ is Cauchy we can find an N_2 so that if $n, m \geq N_2$ then $|a_n - a_m| < \frac{1}{2k}$.

Suppose that $n \ge N = \max\{N_1, N_2\}$. We can also choose an l so that $n_l \ge N \ge N_1$. Then

$$|a_n - L| = |(a_n - a_{n_l}) + (a_{n_l} - L)| \le |a_n - a_{n_l}| + |a_{n_l} - L|$$

by the triangle inequality. But the first term is less than $\frac{1}{2k}$ since $n, n_l \ge N_2$ and the second term is also less than $\frac{1}{2k}$ since $n_l \ge N-1$. Hence $|a_n - L| < \frac{1}{k}$ as required.