Solutions to Homework 2.

February 6, 2013

Problem 2.3.

We assume that the assertion is supposed to hold for all real numbers. Then the statement is

$$(\forall a \in \mathbb{R})(\forall x \in \mathbb{R})(P(a, x) \Rightarrow Q(x)).$$

The negation of this is

$$(\exists a, x \in \mathbb{R})(P(a, x) \land \neg Q(x)).$$

This negation is true, indeed, set a = 0 and x = 1. The following is true though

$$(\forall a \in \mathbb{R} \setminus \{0\})(\forall x \in \mathbb{R})(P(a, x) \Rightarrow Q(x)).$$

Problem 2.4.

- (a) There exists an $x \in A$ such that for all $b \in B$ we have $b \le x$.
- (b) If $x \in A$ then there exists a $b \in B$ with $x \ge b$.
- (c) There exist $x, y \in \mathbb{R}$ such that f(x) = f(y) but $x \neq y$. (In other words, the function f is NOT injective.)
- (d) There exists a $b \in \mathbb{R}$ such that for all $x \in \mathbb{R}$, $f(x) \neq b$. (This is the same as saying that the image of f is not all real numbers.)
- (e) There exists $x, y, \epsilon \in \mathbb{R}$ such that for all $\delta \in P$ we have $|x y| < \delta$ and $|f(x) f(y)| \ge \epsilon$. (This statement is actually always false, so the original is always true.)
- (f) There exists an $\epsilon \in P$ such that for all $\delta \in P$ there exist $x, y \in \mathbb{R}$ with $|x-y| < \delta$ and $|f(x)-f(y)| \ge \epsilon$. (This is the statement that f is NOT uniformly continuous, a notion from analysis we'll see later.)

Problem 2.19.

Let P(x,t) be the statement that you can fool person x and time t. Then Lincoln's statement is

$$((\forall x)(\exists t)P) \wedge ((\exists x)(\forall t)P) \wedge \neg ((\forall x)(\forall t)P).$$

The negation is

$$((\exists x)(\forall t)\neg P) \lor ((\forall x)(\exists t)\neg P) \lor ((\forall x)(\forall t)P).$$

In English this says that either there's a person who can never be fooled, or all people have a certain time when they can't be fooled, or everyone can be fooled all of the time. If all three of these seem unlikely then Lincoln is probably right.

Problem 2.21.

The negation can be written as "there exists an n > 0 such that for all real numbers x we have $x \ge 1/n$."

The negation is clearly false as for any n we just have to choose a real number x less than 1/n.

Problem 2.44.

These statements can be checked using truth tables. For example this is part (a).

P	Q	$\neg Q$	$P \wedge \neg Q$	$(P \land \neg Q) \Rightarrow P$
\overline{T}	Τ	F	F	${ m T}$
\mathbf{T}	F	Τ	${ m T}$	${ m T}$
\mathbf{F}	T	F	\mathbf{F}	${ m T}$
F	F	T	\mathbf{F}	${ m T}$

This means that the statement $(P \land \neg Q) \Rightarrow P$ is true whatever the truth values of P and Q.

Problem 2.47.

(a) We use direct proof. Suppose P(x) is true. Then x is odd which means we can write x = 2k + 1 for some $k \in \mathbb{Z}$. Therefore

$$x^{2} - 1 = (2k + 1)^{2} - 1 = 4k^{2} + 4k = 4k(k + 1).$$

We note that either k or k+1 is even and so k(k+1) is divisible by 2. Therefore 4k(k+1) is divisible by 8 and Q(x) is true.

(b) Here we use the contrapositive. Assume that P(x) is false, which means that x is even. Then x^2 is even and $x^2 - 1$ is odd. Odd numbers are certainly not divisible by 8, so Q(x) is false also and the proof is complete.

Problem 2.48.

- (a) This is false. The negation is that there exists an integer x so that P(x) is true but Q(x) is false. We can take x = 1. Then x is odd and so P is true, but x is not twice an integer and so Q is false. Therefore the negation is true and hence the original statement is false.
- (b) The statement to the left of the implication symbol is, in English, that for all integers x, x is odd. This is clearly false. By the definition of implies, a false statement implies anything. Therefore statement (b) is true!