
Solutions to Homework 7.

March 27, 2013

Problem 42.
This requires a calculation for each a ∈ Z13 − {0}.
For example, this is the result for a = 6.
The functional digraph for multiplication by 6 is

0→ 0

1→ 6→ 10→ 8→ 9

→ 2→ 12→ 7→ 3→ 5→ 4→ 11→ 1.

The order k is the length of the loop starting from 1, in this case 12.

Problem 44.
We can check that 341 is not prime using Fermat’s Little Theorem. For,

if it were prime, then 7340 ≡ 1 mod 341. But the calculation at the top of
page 149 in the book shows that 7340 ≡ 56 mod 341.

To contradict Fermat’s conjecture we need to show that 2341 = 2mod341.
We compute in Z341,

22 ≡ 4, 23 ≡ 8, 24 ≡ 16, 25 ≡ 32, 26 ≡ 64, 27 ≡ 128,

28 ≡ 256, 29 ≡ 512 ≡ 171, 210 ≡ 342 ≡ 1.

Hence 2341 ≡ 234·10+1 ≡ 2 mod 341 as required.

Problem 45.
Let m be a positive integer and m = pk11 . . . pkNN be its prime factorization.

Let
f(x) = (xp1 − x)k1 . . . (xpN − x)kN .

1



2

This is a polynomial with leading coefficient 1.
Then by Fermat’s Little Theorem (xp1−x) is divisible by p1 for all x ∈ Z.

Therefore (xp1 − x)k1 is divisible by pk11 . Similarly the ith factor is divisible
by pkii and the polynomial f(x) is divisible by pk11 . . . pkNN for all x ∈ Z. Hence
f(x) ≡ 0 mod m for all x.

Alternatively Fermat’s theorem can be avoided by just setting

f(x) = x(x + 1)(x + 2) . . . (x + m− 1).

Then for any x ∈ Z, f(x) is a product of m consecutive integers. One of
these integers must be divisible by m and so f(x) is divisible by m. (This is
simpler but the polynomial typically will have higher degree.)

Problem 47.
By Fermat’s Little Theorem we know that (p − 1)! ≡ −1 mod p. If p is

an odd prime then p > 2, or p ≥ 3 and so we can write the identity as

(p− 3)!(p− 2)(p− 1) ≡ −1 mod p.

Now, (p − 2)(p − 1) = p2 − 3p + 2 ≡ 2 mod p. Hence the identity becomes
2(p− 3)! ≡ −1 mod p as required.

Problem 48.
We prove by contrapositive. Suppose that p is not prime. Our goal is to

show that (p−1)! 6≡ −1modp. As p is not prime we can write p = ab for some
divisors a, b with 2 ≤ a, b ≤ p−1. If a 6= b then ab|(p−1)! since both numbers
appear as separate factors in the factorial. Therefore (p− 1)! ≡ 0 mod p.

In the second case we suppose that a = b and p = a2. Further suppose
that a > 2. Then p = a2 > 2a and a and 2a appear as separate factors in
(p− 1)! and again (p− 1)! ≡ 0 mod p.

Finally we suppose that p = 22 = 4. Then (p− 1)! = 3! ≡ 2 mod 4.
In conclusion, if p is not prime then either (p − 1)! ≡ 0 mod p or p = 4

and (p− 1)! ≡ 2 mod p. In both cases (p− 1)! is not congruent to −1 and so
the proof is complete.


