Solutions to Homework 9.

April 11, 2013

Problem 8.18.

We would like to show that if $x \in \mathbb{Q}$ and p is prime then $x^2 \neq p$.

We argue by contradiction and assume there exists an $x \in \mathbb{Q}$ with $x^2 = p$. Let $x = \frac{r}{s}$ in lowest terms. Then $r^2 = ps^2$ and so $p|r^2$. As p is prime this means that p|r and so we can write r = kp for some $k \in \mathbb{Z}$. Then $k^2p^2 = ps^2$ and so dividing by p we get $k^2p = s^2$. Hence $p|s^2$ and again since p is prime p|s. This is a contradiction as $\frac{r}{s}$ was assumed to be in lowest terms and so r and s must be relatively prime.

Problem 8.20.

(a) We need to check that f(x) has rational roots when $c = \pm 2$.

First let c = 2. Then $f(x) = x^6 + 2x + 1$ and so f(-1) = 0 as required.

Next, put c = -2. Then $f(x) = x^6 - 2x + 1$ and so we have f(1) = 0 and again we have a rational root.

(b) For a general integer c, suppose that x is a rational root, written as $x = \frac{r}{s}$ in lowest terms. By the Rational Zeros Theorem we have r|1 and s|1. Thus $r, s = \pm 1$ and $x = \pm 1$.

In the first case suppose x = 1. Then f(1) = 1 + c + 1 = 0 and so c = -2. In the second case suppose x = -1. Then f(-1) = 1 - c + 1 = 0 and so c = 2.

Either way, we see that if f(x) has a rational root then $c = \pm 2$, or in other words there are no rational roots when $c \neq \pm 2$.

Problem 8.21.

Suppose that $x = \frac{r}{s}$ is a rational root in lowest terms, which we remember means s > 0 and is as small as possible. By the Rational Zeros Theorem r|2

and s|2. Therefore the possibilities are $r = \pm 1, \pm 2$ and s = 1, 2. This gives the possibilities for x as $x = \pm 1, \pm 2, \pm \frac{1}{2}$.

As all terms in f(x) have positive coefficients there are no positive roots, so in fact $x = -1, -2, -\frac{1}{2}$. Checking these, only x = -1 is a root. In conclusion there is exactly one rational root, namely -1.

As x = -1 is a root, (x + 1) is a factor and factorizing we can write $f(x) = (x + 1)(2x^2 - x + 2)$. Note that $2x^2 - x + 2 = 2(x - \frac{1}{4})^2 + 2\frac{1}{8}$ and so is always positive. Hence we see that -1 is actually the only real root too.

Problem 8.22.

The kth root of an integer n is a solution to the equation $x^k - n = 0$.

If x is rational then we can write $x = \frac{r}{s}$ in lowest terms and by the Rational Zeros Theorem s|1. This means that x is an integer as required.

Problem 8.23.

The roots of $f(x) = ax^2 + bx + c$ are given by the quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

If these numbers are rational then we can solve to see that $\sqrt{b^2 - 4ac}$ must be rational, and hence, by Theorem 8.14 for instance, $b^2 - 4ac$ is a perfect square, say n^2 .

We know that b is odd. As 4ac is even this means $b^2 - 4ac = n^2$ is odd and so n is odd. Write b = 2k + 1 and n = 2l + 1 for some integers k and l.

Then

$$4k^2 + 4k + 1 - 4ac = 4l^2 + 4l + 1$$

which simplifies to

$$ac = k^{2} - l^{2} + k - l = (k - l)(k + l + 1).$$

Now k - l and k + l + 1 differ by 2l + 1, which is odd, and so exactly one of these numbers must be even. Therefore the product on the right hand side is even. Hence *ac* is even and so we conclude that *a* and *c* cannot both be odd as required.