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Abstract

It is shown that in a symplectic 4-manifold any two C0 close, ho-
motopic Lagrangian submanifolds are smoothly isotopic.
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1 Introduction

In this paper we address a local version of the isotopy problem for
Lagrangian surfaces in a symplectic 4-manifold (M, ω). This question
was first raised by V. Arnold in [1]. A Lagrangian submanifold L is
one for which ω|L vanishes. In general we would like to classify ho-
motopic Lagrangian submanifolds up to smooth isotopy or better still
Lagrangian isotopy, that is, smooth isotopy through Lagrangian sub-
manifolds. Equivalence classes are called Lagrangian knots. Here we
show that in a sufficiently small neighborhood of a given Lagrangian
surface there are no Lagrangian knots up to smooth isotopy. More
precisely our result can be stated as follows.

Theorem 1.1. Let T ∗Σ be the cotangent bundle of a Riemann surface
with its canonical symplectic structure and L ⊂ T ∗Σ be a connected
Lagrangian submanifold homologous to Σ. Then L is smoothly isotopic
to Σ.
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In the case when Σ has genus 0 or 1 the above Theorem 1.1 is due
to Y. Eliashberg and L. Polterovich, see [6]. In fact, work of the first
author, see [13], shows that if Σ has genus 0 then all such Lagrangian
spheres are Lagrangian isotopic to the zero-section. However we re-
mark that it is not true in general that isotopic spheres are Lagrangian
isotopic, see the work of P. Siedel, [26]. If Σ has genus 1 work of the
second author [20] shows again that all such L are Lagrangian iso-
topic. The question of whether or not in higher genus cases all such
isotopic Lagrangians are Lagrangian isotopic remains open.

In general symplectic 4-manifolds there exist homologous high genus
Lagrangian submanifolds which are not smoothly isotopic, see the
work of D. Park, M. Poddar and S. Vidussi, [24].

2 Proof of the theorem

In this section we prove Theorem 1.1. Since the result is known when
Σ has genus 0 or 1 we will assume throughout that Σ has genus g > 1.
Let σ be an area form on Σ of total area 2g − 2. Let π : T ∗Σ → Σ be
the projection along the fibers. The cotangent bundle T ∗Σ carries a
canonical symplectic form ω0 = d(λ0), where λ0 = pdπ is the Liouville
form. The zero section Σ is Lagrangian with respect to ω0.

We can also think of T ∗Σ as a tubular neighborhood of a symplectic
submanifold Σ. Then T ∗Σ carries another symplectic form τ which is
symplectic on the fibers and such that τ |Σ = σ. Let r : T ∗Σ → [0,∞)
be the length function with respect to an Hermitian metric on (the
complex line bundle) T ∗Σ. We denote the levels by T rΣ. Then the
unit circle bundle π : T 1Σ → Σ carries a connection α with dα = π∗σ.
We can arrange that τ |T rΣ = f(r)dα̃ where α̃ is the pullback of the
form α on T 1Σ and f is decreasing towards 0 as r approaches ∞.

For ε sufficiently small, Ωε = ω0 + ετ is also a symplectic form on
T ∗Σ.

We reparameterize ω0 such that outside of a large compact set
T≤r0Σ it is given by d(erλ̃0) where λ̃0 denotes the pullback of the
Liouville form from the unit tangent bundle. Also outside of T≤r0Σ
we extend τ by extending the function f to a decreasing function g(r)
with g = −er outside of a (larger) compact set. Then we define a
new form ω on T ∗Σ by ω = Ωε on T≤r0Σ and ω = d(erλ̃0 + εg(r)α̃)
elsewhere. We note that ω is a symplectic form for ε sufficiently small
and that the fibers of T ∗Σ are ω-symplectic planes of infinte area.
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Let V be a tubular neighborhood of our Lagrangian submanifold
L ⊂ (T≤r0Σ, ω0).

Lemma 2.1. There exists an ε0 > 0 such that for all ε < ε0 the
Lagrangian L can be isotoped to an Ωε symplectic surface within V .

Proof This is a slight modification of Proposition 2.1.A in [6]. Let
σ be a symplectic form on V such that σ|L is an area form of total area
2g−2. Then (τ−σ)|L is exact and so by the relative Poincaré Lemma
there exists a 1-form λ on V such that σ = τ + dλ. Let ρ : V → [0, 1]
have compact support and equal 1 close to L. Then there exists an ε0
such that for ε ≤ ε0 the form Ω′ε = ω0 + ε(τ + d(ρλ)) is symplectic as
is the linear family of forms connecting Ω′ε to Ωε. As Ω′ε = Ωε away
from V and L is Ω′ε symplectic it follows from Moser’s method that L
can be isotoped to an Ωε symplectic surface inside V .

The results from [14] imply that that all Ωε symplectic surfaces
sufficiently close to Σ are isotopic to Σ. Thus we could conclude here
if it were possible to arrange that the symplectic surface was contained
in a suitably small symplectic neighborhood. However we could find no
straightforward method of doing this. Instead we proceed as follows.

Lemma 2.2. For ε sufficiently small, all connected symplectic sur-
faces S in (T ∗Σ, ω) which are homologous to Σ and intersect the fiber
over a point p exactly once transversally must be smoothly isotopic to
Σ.

Proof Let U be a neighborhood of p such that a given symplectic
surface S intersects all fibers over points q ∈ U transversally in a single
point. By a small perturbation we may assume that S ∩ Σ is disjoint
from π−1(U).

Let h : Σ → R be a Morse function with a single minimum and all
critical points contained in U . Then the gradient flowlines of h foliate
the complement of the critical points of h by curves γ(x) : (−∞,∞) →
Σ which lie in U for |x| sufficiently large. Denote the critical points of
h by p1, ..., pN .

Let si ∈ S be the unique point with π(si) = pi. Then we also
assume that as subspaces of T (T ∗Σ) we have TsiS = T (π−1(pi))⊥Ωε ,
the symplectic complement to the tangent space of the fiber.

Recall that for r sufficiently large ω|T rΣ = dβ where β = erλ̃0 +
εg(r)α̃ is a contact form for ε sufficiently small. We observe that
π−1(γ(R))∩T rΣ is a cylinder Cγ foliated by the circles Fx = π−1(γ(x)).
Now, λ̃0 vanishes on the Fx while α̃ does not. Therefore kerβ|Cγ is
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a nonsingular line field l transverse to all Fx. In particular l has no
closed orbits.

We claim that there exists an almost complex structure J0 on T ∗Σ
which is tamed by ω and satisfies the following properties. The sur-
faces S ∩ π−1(U) and Σ are J0 holomorphic; the contact planes kerβ
in T rΣ are J0 holomorphic for some r sufficiently large; for all critical
points pi the disk Di = π−1(pi) is J0-holomorphic.

The only requirement here which is not well known is the claim that
it is possible to find a J0 along T rΣ which simultaneously makes both
the subbundles kerβ and π−1(pi) into J0-holomorphic distributions.
But the existence of such J0 is established in a more general context
by Theorem 7.4 in the article [4] of J. Coffey.

Let Jt, 0 ≤ t ≤ 1 be a family of almost-complex structures on T ∗Σ
coinciding with J0 outside some T sΣ, where s < r, and on π−1(U),
such that S is J1 holomorphic.

We next claim that for all t the cylinders Cγ can be foliated by
circles which bound Jt holomorphic disks. These circles are transverse
to l and at the ends of the cylinders the holomorphic disks converge to
the fibers π−1(pi) for pi a critical point. The union of all disks over all
cylinders gives a foliation of T≤rΣ by disks in the relative homotopy
class of the fibers.

This claim follows from the theory of filling by holomorphic disks,
see [5]. For each γ, the cylinder Cγ is foliated by the boundaries of
embedded holomorphic disks near its ends. But as the cylinders are
totally real the foliation extends to cover the whole cylinder. The only
obstruction in this case is bubbling of holomorphic spheres inside T ∗Σ
and bubbling of disks on the boundary. But as π2(Σ) is trivial such
spheres do not exist. Bubbling of disks can be excluded as in [5] since
all holomorphic disks with boundary on T rΣ must have boundary
transverse to l. For embedded boundaries this fixes the homology
class and prevents degeneracies.

The disks Di constructed above are Jt holomorphic for all t and
their intersection with S and Σ is transversal and in a single point.
Therefore by positivity of intersections the same is true for all inter-
sections of J0 holomorphic disks with Σ and all J1 holomorphic disks
with S.

We fix a Riemannian metric on T ∗Σ which decays rapidly along
the fibers. Then with respect to the restricted metric the centers of
mass of our holomorphic disks give a smooth family of surfaces Gt.
By the previous remark, it is clear that G0 is smoothly isotopic to Σ



2 PROOF OF THE THEOREM 5

and G1 is isotopic to S.

Lemma 2.3. The Lagrangian L can be isotoped to an ω symplectic
surface in T ∗Σ intersecting the fiber over a point p transversally in a
single point.

This will follow from the following two lemmas.
First, let γ be a noncontractible curve in Σ and U be a neighbor-

hood of π−1(γ). We can identify U with D2 × S1 × (−s, s) where the
D2 factor has coordinates (x, y) and corresponds to the fibers of T ∗Σ,
the S1 factor corresponds to γ and has coordinate θ and the interval
has coordinate t.

We recall that we are working with a symplectic form ω = ω0 + ετ
where ω0 = d(rλ̃0) is the canonical form on the cotangent bundle.

Lemma 2.4. There exists a hypersurface B ⊂ T ∗Σ which is foliated
by symplectic disks and contains a Lagrangian torus T intersecting
each disk in a circle. The disks are symplectically isotopic to the fibers
of T ∗Σ. Furthermore there exists a symplectic isotopy of S to a surface
intersecting B only on the interior I of T .

Proof With the coordinates above on U , we may assume that
ω0 = dx∧ dt + dy ∧ dθ and τ = dx∧ dy + dθ ∧ dt, at least close to the
zero-section.

For any c a primitive of ω is given by

λ = cxdt− (1− c)tdx + ydθ − εydx− εtdθ.

The dual of λ with respect to ω is a conformally expanding vec-
torfield given by

Y =
1

1 + ε2
(cx

∂

∂x
+ ((1 + ε2)y − cεt)

∂

∂y
+ cεx

∂

∂θ
+ (1− c + ε2)t

∂

∂t
).

So, for instance letting c = 1
2 , we see that the corresponding contract-

ing vectorfield −Y vanishes only when x = y = t = 0, preserves t = 0,
and retracts a (convex) neighborhood of t = 0 onto x = y = t = 0.

We can find similar contracting vectorfields defined near t = ±2ε2.
We now follow a method of [13]. Let V be a convex neighborhood
of, say, t = 2ε2. Near ∂V we can choose an almost-complex structure
such that S is J-holomorphic, ∂V is J-convex and Y is the gradient
of a J-convex exhaustion function f increasing to 0 near ∂V . We can
perturb J further such that df(Y ) is constant near ∂V , and let χ be
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a decreasing function such that χ(0) = 0 and χ(x) ≡ 1 for x < −δ,
some small δ. Then the flow of −χ(f)Y now provides a compactly
supported isotopy of S. The calculation in [13] shows that S remains
symplectic during the isotopy, in particular near ∂V . Thus, repeating
the procedure near t = −2ε2, we may assume that our surface S lies
arbitrarily close, say within ε6, to x = y = 0 when t = ±2ε2.

Now let φ(x, y) be a compactly supported function with φ(x, y) = y
ε

when x2+y2 < ε6 and |dφ| < ε2. We can choose φ such that the surface
B = {t = φ(x, y)} lies within −2ε2 < t < ε2. Further, we notice that

ω(
∂

∂x
+

∂φ

∂x

∂

∂t
,

∂

∂y
+

∂φ

∂y

∂

∂t
) = ε +

∂φ

∂y
> 0

and so B is foliated by symplectic planes, which coincide with the
fibers away from the support of φ. We define the Lagrangian torus
T = {x2 + y2 + t2 = ε6} ∩B.

We now fix c = ε2 and study the flow of the corresponding vec-
torfield −Y on −2ε2 < t < 2ε2, suitable cut-off near the boundary
as before. Again, compact subsets contract towards x = y = t = 0.
We claim that after following the flow for a sufficiently long time the
image of S will intersect B only inside T . This is clear for points on
S away from −2ε2 < t < ε2. For points starting near the boundary,
the x and t coordinates strictly decrease and the rate of increase of
the y coordinate is given by −(1 + ε2)y + ε3t. So since |t| < 2ε2 the
magnitude of the y coordinate can never exceed 2ε5 (we recall that
initially this magnitude is bounded by ε6). Now, if a point on this
flow intersects Σ then x2 + y2 < ε6 and so t = y

ε and |t| < 2ε4. Thus
the intersection with B does indeed lie inside T as required and the
lemma is complete.

Lemma 2.5. There exists a symplectic disk asymptotic at its boundary
to {θ = 0, y = εt} which intersects S in a single point and is isotopic
to {θ = 0, y = εt} through symplectic disks disjoint from B \ I.

Proof Let J0 be an almost-complex structure on T ∗Σ tamed by
ω and such that the fibers of T ∗Σ are J0-holomorphic planes. It is
easy to adjust J0 such that T ∗Σ is still fibered by holomorphic planes
coinciding with the cotangent fibers away from U but including the
fibers of Σ. Then the I ∩ {θ = a} for a ∈ S1 are a family of J0

holomorphic disks with boundary on the Lagrangian torus T .
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If we degenerate J0 along T then these disks can be thought of as
finite energy planes in an almost-complex manifold T ∗Σ \ T with a
concave cylindrical end isomorphic to T 1T × (−∞, 0]. Given a family
of almost-complex structures Jt we can then study finite energy planes
in T ∗Σ \ T asymptotic to a geodesic orbit in T 1T which projects in
B to 0 ∈ S1. Such planes form a well-defined moduli space and since
no other homology classes of geodesics in T can bound finite energy
planes the moduli space is compact. If the Jt are all equal to J0 on
B \ I then the planes avoid B \ I by positivity of intersection, and the
moduli space consists of a single plane when t = 0, again by positivity
of intersection. Thus the space of planes is nonempty for all Jt. If we
choose J1 such that S is J1-holomorphic then a J1 holomorphic plane
provides a disk satisfying the requirements of the lemma.

Putting all of these isotopies together gives an isotopy of S as
required for Lemma 2.3 and thus establishes our main theorem.
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[19] H. Hofer, V. Lizan, and J.-C. Sikorav. On genericity for holo-
morphic curves in four-dimensional almost-complex manifolds. J.
Geom. Anal., 7(1):149–159, 1997.

[20] A. Ivrii. Lagrangian unknottedness of tori in certain symplectic
4-manifolds, Phd thesis.

[21] D. McDuff and D. Salamon, Introduction to symplectic topology.
Second edition. Oxford Mathematical Monographs. The Claren-
don Press, Oxford University Press, New York, 1998

[22] D. McDuff and D. Salamon. J-holomorphic curves and quantum
cohomology, volume 6 of University Lecture Series. American
Mathematical Society, Providence, RI, 1994.

[23] D. McDuff and D. Salamon, J-holomorphic curves and symplec-
tic topology. American Mathematical Society Colloquium Pub-
lications, 52. American Mathematical Society, Providence, RI,
2004.

[24] D. Park, M. Poddar, S. Vidussi, Homologous Non-isotopic sym-
plectic surfaces of higher genus, to appear in Trans. Amer. Math.
Soc.



REFERENCES 10

[25] J. Robbin and D. Salamon, The Maslov index for paths, Topology,
32(1993), 827-844.

[26] P. Seidel, Lagrangian two-spheres can be symplectically knotted,
J. Diff. Geom., 52(1999), 145-171.

[27] W. Ziller, Geometry of the Katok examples, Ergod. Th. and Dy-
nam. Sys., 3(1982), 135-157.

Richard Hind
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556
email: hind.1@nd.edu

Alexander Ivrii
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