Lagrangian unknottedness in Stein surfaces

R. Hind

May 16, 2005

Abstract We show that the space of Lagrangian spheres inside the cotangent bundle of the 2-sphere, with its canonical symplectic structure, is contractible. We then discuss the phenomenon of Lagrangian unknottedness in other Stein surfaces. There exist homotopic Lagrangian spheres which are not Hamiltonian isotopic, but we show that in a typical case all such spheres are still equivalent under a symplectomorphism.

1 Introduction

Studying the space of Lagrangian submanifolds is a fundamental problem in symplectic topology. Lagrangian spheres appear naturally in the Lefschetz pencil picture of symplectic manifolds.

In this paper we demonstrate the uniqueness up to Hamiltonian isotopy of the Lagrangian spheres in some 4-dimensional Stein symplectic manifolds. The most important example is the cotangent bundle of the 2-sphere, T^*S^2, with its standard symplectic structure. In this case we will go on to study the space of all Lagrangian spheres in T^*S^2, showing that it is contractible.

Finally, we study an example of a Stein manifold in which a particular homotopy class (even isotopy class) contains Lagrangian spheres which are not

*Supported in part by NSF grant DMS-0204634.
Hamiltonian isotopic. We show that the spheres in this class are still unknotted in a weaker sense, namely they are all equivalent under a global (non Hamiltonian) symplectomorphism.

We recall that if a convex symplectic manifold has a boundary of contact-type, then we can perform surgery operations on the manifold by adding handles to the boundary. In the 4-dimensional case these handles can be of index 1 or 2. Our first examples are symplectic manifolds formed by adding 1-handles to a unit cotangent bundle T^*S^2. Questions regarding Lagrangian isotopy classes are independent of which metric we use to define a unit tangent bundle or of any choices involved in adding 1-handles.

Theorem 1 Let M be T^*S^2 or the result of adding any number of 1-handles to T^1S^2 and $L \subset M$ be a Lagrangian sphere. Then there exists a Hamiltonian diffeomorphism of M mapping L onto the zero-section.

We will establish this theorem by utilizing an existence result for almost-complex structures on $S^2 \times S^2$ with convenient properties, taken from [15], and a fact about diffeomorphisms of the 2-sphere.

In fact more is true. We let L denote the space of Lagrangian spheres in T^*S^2 endowed with the topology of smooth convergence.

Theorem 2 The topological space L is contractible.

It is a consequence of a general theorem of J. Coffey [3], combined with the result of [15], that the space of parameterized Lagrangian spheres in $S^2 \times S^2$ is homotopic to $SO(3) \times SO(3)$. A theorem of Y. Eliashberg and L. Polterovich, see [10], says that the space of Lagrangian planes in a standard \mathbb{R}^4, equal to a fixed plane outside of a compact set, is also contractible. The proof here involves parameterized versions of the arguments in Theorem 1. In both cases we need a result about diffeomorphisms of the 2-sphere.

Theorem 3 The subset of fixed-point free maps contained in the diffeomorphism group of S^2 is contractible.
In section 2 we prove our result on the diffeomorphisms of S^2. In section 3, by using the conclusions of [15], we reduce our theorem in the case of $M = T^* S^2$ to the statements in section 2. In section 4 we will deal with the addition of handles. This involves slightly generalizing the results from [15] so we will review them again there.

We now consider the addition of 2-handles. Let W be the Stein manifold formed by adding to $T^1 S^2$ a single 2-handle along the Legendrian curve in a single fiber of the boundary. As a Stein manifold it carries a symplectic structure which has a conformally expanding vector field whose flow exists for all time. The symplectic structure is the Kähler form associated to a plurisubharmonic exhaustion function and all such forms are equivalent up to symplectomorphism (see [9]). Alternatively W can be realized as the plumbing of two copies of $T^1 S^2$.

The resulting symplectic manifold W has two Lagrangian spheres L_1 and L_2 coming from the zero-sections in the $T^1 S^2$ (or the original zero-section and the stable manifold of the index 2 critical point in the added handle). Again we will establish a uniqueness result for Lagrangian spheres in W.

Theorem 4 Let L be a Lagrangian sphere in W, the plumbing of two copies of $T^* S^2$, which is homotopic to one of the zero-sections L_1. Then there exists a symplectomorphism ϕ of W such that $\phi(L) = L_1$.

The proof combines Theorem 1 with some previous work of the author and is described in section 5.

Thus any Lagrangian spheres which are homotopic to L_1 but are knotted in the Hamiltonian sense must arise from global symplectomorphisms applied to L_1. Such symplectomorphisms do indeed exist. Recall that associated to any Lagrangian sphere L is a compactly supported symplectomorphism τ_L called a generalized Dehn Twist. It is well-defined up to Hamiltonian symplectomorphism. The square τ_L^2 is smoothly but not necessarily symplectically isotopic to the identity. Thus $\tau_{L_2}^{2r}(L_1)$ is a Lagrangian sphere in W which is smoothly isotopic to L_1 for any integer r. However, as demonstrated by P. Seidel in [23],
a Floer homology computation shows that none of the $\tau^*_{L_2}(L_1)$ are Hamiltonian isotopic.

We do not know whether Dehn twists give the only examples of this phenomenon, that is, whether all Lagrangian spheres homotopic to L_1 are generated from L_1 by iterates of Dehn twists up to Hamiltonian diffeomorphism. In fact, not too much is known about the components of the symplectomorphism groups of Stein manifolds. As far as the author is aware, the only known symplectomorphisms which are homotopically trivial but do not lie in the identity component are generated by Dehn twists.

Similar methods generalize the unknottedness result of Theorem 4 to a larger class of Stein manifolds, but it is unclear whether or not the result is true in general.

As yet we are unable to prove any similar results for Lagrangian surfaces of genus at least 2, but A. Ivrii has established some similar results for Lagrangian tori. Here we make some remarks about the case of $\mathbb{R}P^2$. The results of [15] show that any Lagrangian sphere L in $S^2 \times S^2$ homotopic to the antidiagonal $\overline{\Delta}$ is in fact Lagrangian isotopic to $\overline{\Delta}$. In this paper we will show that if L is disjoint from the diagonal Δ then the Lagrangian isotopy can be chosen to lie in $S^2 \times S^2 \setminus \Delta$. Now, the involution σ of $S^2 \times S^2$ interchanging the two factors has fixed-point set equal to Δ and restricts to the antipodal map on $\overline{\Delta}$. If L is invariant under σ then the isotopy can also be chosen to be σ-equivariant. Now, quotienting out by σ, we observe that $S^2 \times S^2 \setminus \Delta$ is a double-cover of a unit cotangent bundle of $\mathbb{R}P^2$ and Lagrangian spheres in $T^*\mathbb{R}P^2$ homotopic to the zero-section therefore correspond to σ-invariant Lagrangian spheres in $S^2 \times S^2 \setminus \Delta$ homotopic to $\overline{\Delta}$. Hence we have the following corollary.

Corollary 5 A Lagrangian $\mathbb{R}P^2$ homotopic to the zero-section in $T^*\mathbb{R}P^2$ must be Hamiltonian isotopic to the zero-section.

A natural compactification of the (unit) cotangent bundle of $\mathbb{R}P^2$ is $\mathbb{C}P^2$. Again the Lagrangian is unique.
Theorem 6 Let \(L \) be a Lagrangian \(\mathbb{R}P^2 \) in \(\mathbb{C}P^2 \). Then there exists a Hamiltonian isotopy taking \(L \) onto the standard embedding.

Perhaps our methods can be extended to cover this case, but the theorem can be established by other methods. For example, the surgery technique described by M. Symington in [25] replaces a Lagrangian \(\mathbb{R}P^2 \) by a symplectic sphere, transforming \(\mathbb{C}P^2 \) into an \(S^2 \times S^2 \). But the symplectic spheres in \(S^2 \times S^2 \) have been classified up to Hamiltonian isotopy by B. Siebert and G. Tian in [24].

The author would like to thank Alex Ivrii for some helpful comments.

2 Diffeomorphisms of the two-sphere

In this section we let \(f \) denote a diffeomorphism of the 2-sphere \(S^2 \) and for a point \(x \in S^2 \) we denote its antipodal point by \(-x\).

We say that a diffeomorphism \(f \) has the property (\(\ast \)) if \(f(x) \neq -x \) for all \(x \in S^2 \).

The aim of the section is to prove the following theorem.

Theorem 7 Suppose that a smooth family of diffeomorphisms \(f_p \) depending upon a parameter \(p \in S^k \), \(k \geq 0 \), have the property (\(\ast \)) and \(f_1 = \text{id} \) for a point \(1 \in S^k \). Then there exists a family of isotopies \(f_{p,t} \), \(0 \leq t \leq 1 \), with \(f_{p,0} = f_p \) and \(f_{p,1} = \text{id} \) for all \(p, f_{1,t} = \text{id} \) for all \(t \) and such that \(f_{p,t} \) has property (\(\ast \)) for all \(p, t \).

Proof of theorem

Let \(E \) denote an equator on \(S^2 \). The complement of \(E \) consists of two open disks \(H_1 \) and \(H_2 \) with \(-H_1 = H_2 \).

We observe that any diffeomorphism \(g \) with property (\(\ast \)) and which preserves \(E \) is indeed isotopic to the identity through diffeomorphisms \(G_t \) also satisfying (\(\ast \)). To construct such an isotopy, we first isotope \(g \) to the identity in a neighbourhood of \(E \). Now the resulting map restricts to a compactly supported
diffeomorphism of H_1 and H_2. But compactly supported diffeomorphisms of the disk are isotopic to the identity (see for instance [26], page 205). Combining these isotopies we get the required isotopy of g. It satisfies (⋆) since $-H_1 = H_2$. This construction also applies in the case of parameterized maps f_p.

Hence it suffices to find a suitable family of isotopies from f_p to diffeomorphisms preserving an equator E.

We construct our isotopies by applying the following lemma.

Lemma 8 Let $\Phi_p : [-1, 1] \times S^1 \rightarrow S^2$ be a family of smooth embeddings and $L_{p,s} = \Phi_p(\frac{2}{\pi}\arctan(s))$, $-\infty < s < \infty$ be a foliation of $\Phi_p((-1, 1) \times S^1)$ by circles. For any N, K there exists a family of isotopies $f_{p,t}$ satisfying (⋆) such that $f_{p,0} = f_p$ and $f_{p,t}(z) \in f_p(L_{p,s+tN})$ for all $z \in L_{p,s}$, $0 \leq t \leq 1$, $s > -K$. Further $f_{p,t}(z) = f_p(z)$ for all z outside of the image of $f_p \circ \Phi$.

Proof

As the condition on our isotopy is an open one, we may assume any necessary genericity properties for the diffeomorphisms f_p with respect to the foliation $L_{p,s}$. Specifically for any p, s, r we will assume that $f_p(L_{p,r}) \cap -L_{p,s}$ consists of an isolated set of points and any tangencies are of finite order. For convenience we describe the isotopy only in the unparameterized case, or when $p \in S^0$. Therefore we remove the p subscripts from all maps and circles. It will be clear that any choices involved in constructing the isotopy can also be made continuously in finite dimensional families.

Suppose that $N > 0$. For $r \in \mathbb{R}$, let a_r be a diffeomorphism of S^2 such that $a_r(L_s) = L_{s+r}$ and a_r extends as the identity outside of the image of Φ. Then we will define f_t on the image of Φ by

$$f_t(z) = h_t f a_{Nt}(z)$$

where h_t is a diffeomorphism of the image of $f \Phi$ which preserves the foliation $\{f(L_s)\}$ and extends by the identity to a diffeomorphism of S^2. We set $h_{t,s} = h_t|_{f(L_{s+Nt})}$.

6
Then we need to find smoothly varying $h_{t,s}$ such that $h_{t,s}(f(a_{tN}(z))) \neq -z$
for all $z \in L_s$, s and $0 \leq t \leq 1$.

For s very large we have $h_{t,s} = \text{id}$ and $a_{tN}(z)$ very close to z for $z \in L_s$ so
as the condition is an open one it automatically holds. It is required to show
that we can extend these diffeomorphisms for all parameters s.

Again since property (\ast) is an open condition, we observe that once we have
defined the h_{t,s_0} for some s_0 we can smoothly extend the functions to define
$h_{t,s}$ for s slightly less than s_0.

Another observation is that an isotopy defined with the required properties
for $s \geq s_1$, some s_1, can always be extended to an isotopy of $\Phi([-1,1] \times S^1)$
satisfying the property (\ast) and preserving the foliation by levels $f(L_s)$. To do
this, we simply smoothly cut-off the vector field generating f_t in such a way
that the flow of the cut-off still preserves the levels. Property (\ast) still holds
provided that the vector field is zero on $f(L_s)$ for $s < s_1 - \epsilon$, ϵ sufficiently small.
The key point is that since the orbit of a point x on L_{s_1} avoids the point $-x$, it
also avoids $-y$ for all y close to x. This method can also be used to cut-off any
isotopies for $s < -K$.

For any s, as t increases from 0 to 1 there is a varying collection of points
$I_{t,s} = f(L_{s+tN}) \cap -L_s$. The diffeomorphisms $h_{t,s}$ can be extended arbitrarily
once they define the inverse image of these intersections.

Now, for typical s' the families of points $I_{t,s'}$, $0 \leq t \leq 1$, will vary continuously
with s for s close to s'. This can be guaranteed if for instance $f(L_{s' + tN})$
intersects $-L_{s'}$ with order at most 2 for all t and transversally if $t = 0$ or $t = 1$.
For a fixed value of s the $I_{t,s}$ will consist of a continuously varying set of points
which at certain times t appear or vanish in pairs. Continuous variation with s
means that for s close to s' we have smooth families of diffeomorphisms

$$\phi_s : [0,1] \to [0,1]$$

$$g_{t,s} : f(L_{s+tN}) \to f(L_{s' + \phi_s(t)}N)$$
\[b_{t,s} : L_s \rightarrow L_{s'} \]

such that \(\phi_{s'} = \text{id}, g_{t,s'} = \text{id}, b_{t,s'} = \text{id} \) and \(g_{0,s}(f(z)) = f(b_{0,s}(z)) \). They can be chosen such that \(g_{t,s}(I_{t,s}) = I_{\phi_{s}(t),s'} \) and if \(-z \in I_{t,s} \), then \(g_{t,s}(-z) = -b_{t,s}(z) \).

The existence of such diffeomorphisms implies that if we have defined suitable \(h_{t,s} \) then for an \(s \) close to \(s' \) we may define the \(h_{t,s} \) by

\[
 h_{t,s}(f(a_{sN}(z))) = g_{t,s}^{-1} h_{\phi_{s}(t),s'}(f(a_{\phi_{s}(t)N}b_{t,s}(z))).
\]

At a finite collection of parameters \(s_i \) the pattern of intersections \(I_{t,s_i} \) will change from nearby values. Assuming \(f \) to be generic, the change will occur only near a single point in \(S^2 \) for a single \(t \) parameter. It remains to show that the \(h_{t,s} \) can still be defined near such critical parameters. We can then extend their definition to all \(s \).

Suppose that \(s'' \) is such a critical parameter. In the first case we consider the situation when \(f(L_{s''}) \) and \(f(L_{s'' + N}) \) are transverse to \(-L_{s''} \). Then since \(s'' \) is critical there exists a \(\sigma \) with \(0 < \sigma < 1 \) and \(f(L_{s'' + \sigma N}) \) tangent to high order with \(-L_{s''} \). Nevertheless \(I_{s'',s''} \) still consists of an isolated set of points. We suppose that \(h_{t,s'} \) can be defined for some \(s' > s'' \) and \(s'' \) the largest critical parameter less than \(s' \).

Let the tangency occur at a point \(p \). We choose a small neighborhood \(U \) of \(p \) such that \(L_s \cap -U \) consists of a small interval for \(s'' \leq s \leq s' \) and \(f(L_{s'} \cap -U) \) is disjoint from \(U \) for all \(t \).

For an \(\epsilon > 0 \) and \(s' - s'' \) sufficiently small the diffeomorphisms \(\phi_s, g_{t,s} \) and \(b_{t,s} \) can be defined as before for \(s'' \leq s \leq s' \) and satisfy the required properties for \(|t - \sigma| > \epsilon \). For all \(t \) we can choose the maps such that \(g_{t,s}(I_{t,s} \setminus U) = I_{\phi_{s}(t),s'} \setminus U \) while \(g_{t,s} \) preserves \(U \) and \(b_{t,s} \) preserves \(-U \). Then the maps \(h_{t,s} \) can be defined as before.

In the second case suppose that \(-L_{s''} \) is tangent to \(f(L_{s''}) \) or \(f(L_{s'' + N}) \). We may now assume that the diffeomorphisms \(g_{t,s} \) and \(b_{t,s} \) will exist as before for \(t \) away from 0 and 1. This is already enough in the case of a tangency with
\(f(L_{s''}) \) since we can set \(h_{t,s''} = \text{id} \) for \(t \) close to 0.

If \(f(L_{s''} + N) \) is tangent to \(-L_{s''}\) at a point \(p \) and \(f(L_{s+N}) \cap -L_s \) is empty for \(s > s'' \) then it is easy to extend the \(h_{t,s} \) to \(s = s'' \) simply ensuring that \(f_{-1}^t(-p) \neq p \).

Otherwise, suppose that \(f_1(L_{s''}) \cap -L_{s''} \supset \{ f_1(y), f_1(z) \} \) for some \(s' > s'' \) and that the two intersection points come together as \(s \) approaches \(s'' \) from above. We can extend the isotopy to \(L_{s''} \) if and only if the points \(f(y), -y, -z, f(z) \) do not occur in that order along \(-L_s\), this is the obstruction to the intersection points moving together. But recall that the isotopy does indeed extend with property (\(\ast \)) to all \(L_s \) if we neglect the condition that \(f_1(L_s) = f(L_{s+N}) \), but still can require that \(f_1(L_s) = f_1(L_r) \) for some \(r > s \). The extended isotopy then still has the property that some \(f_1(L_s) \) is tangent to \(-L_s\) near the point \(p \). Thus the obstruction must vanish and we can define \(f_t(L_{s''}) \) as required. This completes the proof of the lemma.

We apply Lemma 8 in various situations to complete the proof of Theorem 2.

In the case when \(p \in S^0 \), \(f_{-1} \) must have at least one fixed point and without loss of generality we assume that \(f_{-1}(N) = N \), where \(N \) is the north pole.

When \(p \in S^k \), \(k \geq 1 \), we perform a family of isotopies to arrange that \(f_p(N) = N \) for all \(p \). To do this, we fix a small circle \(C \) around \(N \). Then \(f_p(C) \) is a small circle around \(f_p(N) \). By an application of Lemma 8 to a cylinder between \(f_p(C) \) and a circle \(D \) around the south pole \(S \) enclosing both \(C \) and \(f_p(C) \) we can find an isotopy of \(f_p \) to a diffeomorphism satisfying \(f_p(C) = D \). After a further application of the lemma to the cylinder between \(C \) and \(D \) we may assume that \(f_p(C) = C \). Also, the interior of \(C \) must map to itself and from here, since \(C \) and \(-C \) are disjoint, it is easy to isotope the \(f_p \) to maps satisfying \(f_p(N) = N \).

The same procedure can be used to find isotopies of \(f_p \) to maps satisfying \(f_p(S) = S \) for all \(p \). This family of isotopies leaves \(f_p(N) = N \) fixed. Thus we
may assume that \(f_p(N) = N \) and \(f_p(S) = S \) for all \(p \), and in fact that \(f_p = \text{id} \) in small neighborhoods of \(N \) and \(S \).

We can conclude as follows. Write the complement of smaller neighborhoods of \(N \) and \(S \) in \(S^2 \) as \(\mathbb{R} \times S^1 \) and let \(L_{p,s} = \{ s \} \times S^1 \). The equator \(E = \{ 0 \} \times S^1 \).

First we apply the lemma to find isotopies to new diffeomorphisms, still denoted by \(f_p \), such that \(f_p(z) \in L_K \) for all \(z \in E \), for \(K \) large. Let \(G_p = f_p^{-1}(E) \). Then \(G_p \) is disjoint from \(E \) and so we can form other foliations \(L'_{p,s} \) which include the circles \(G_p \) and \(E \). Hence after another application of the lemma we can isotope the \(f_p \) to diffeomorphisms now satisfying \(f_p(z) \in E \) for all \(z \in E \) and \(p \in S^k \).

3 Lagrangian spheres in \(T^*S^2 \)

Let \(L \) be a Lagrangian sphere in \(T^*S^2 \). This has self-intersection number \(-2\) and so must be homotopic to the zero-section. By scaling in the fibers we may assume that \(L \subset T^1S^2 \). We will identify \(T^1S^2 \) with the complement of the diagonal \(\Delta \) in \(S^2 \times S^2 \) with its standard split symplectic form \(\omega = \omega_0 \oplus \omega_0 \).

Under this identification, the zero-section in \(T^1S^2 \) becomes the antidiagonal \(\overline{\Delta} \).

Thus Theorem 1 in this case is equivalent to the following.

Theorem 9 Given a Lagrangian sphere \(L \subset S^2 \times S^2 \setminus \Delta \) homotopic to \(\overline{\Delta} \), there exists a Hamiltonian isotopy of \(S^2 \times S^2 \) which fixes \(\Delta \) and maps \(L \) onto \(\overline{\Delta} \).

Given an almost-complex structure \(J \) on \(S^2 \times S^2 \) tamed by \(\omega \), Gromov showed in [11] that there exist unique foliations \(\mathcal{F}_0 \) and \(\mathcal{F}_1 \) by \(J \)-holomorphic curves in the classes \([S^2 \times \text{pt}]\) and \([\text{pt} \times S^2]\). With respect to the standard almost-complex structure \(J_0 = i \oplus i \), these foliations are exactly \(S^2 \times \text{pt} \) and \(\text{pt} \times S^2 \). The key lemma which we need from [15] is the following.

Lemma 10 There exists a tame almost-complex structure \(J \) on \(S^2 \times S^2 \) such that each curve in the corresponding foliations \(\mathcal{F}_0 \) and \(\mathcal{F}_1 \) intersects \(L \) transversally in a single point. The almost-complex structure \(J \) can be taken to agree
with J_0 near Δ.

The second statement was not included in [15] but is clearly true from the proof.

There exists a family of tame almost-complex structures J_t, $0 \leq t \leq 1$ on $S^2 \times S^2$ with $J_1 = J$ and, for all t, $J_t = J_0 = i \oplus i$ near Δ. In particular, Δ is a J_t-holomorphic curve for all t. By the positivity of intersections for J_t-holomorphic curves, each holomorphic curve in the foliations \mathcal{F}_0 and \mathcal{F}_1 intersects Δ transversally in a single point.

We define a diffeomorphism $f : \Delta \to \Delta$ by $f(x) = y$, where $y \in \Delta$ is the unique point such that the J-holomorphic curve in \mathcal{F}_1 through y intersects the J-holomorphic curve in \mathcal{F}_0 through x on L. Then $f(x) \neq x$ for all $x \in \Delta$.

As in the previous section, for a point $x \in \Delta$ we denote its image under the antipodal map by $-x$. Then the J_0-holomorphic curve in \mathcal{F}_0 through x intersects the J_0-holomorphic curve in \mathcal{F}_1 through $-x$ on Δ for all $x \in \Delta$.

We can apply the theorem of section 2 without the parameter p (or in the case $k = 0$) to get the following.

Lemma 11 There exists an isotopy $g_t : \Delta \to \Delta$, $0 \leq t \leq 1$, with $g_0 = \text{id}$, $g_1 = -f^{-1}$ and $g_t(x) \neq -x$ for all t and $x \in \Delta$.

We now define maps $\phi_t : S^2 \times S^2 \to S^2 \times S^2$ by requiring that ϕ_t maps the J_t-holomorphic curves in \mathcal{F}_0 and \mathcal{F}_1 to the corresponding J_0-holomorphic foliations, the J_t-holomorphic curve in \mathcal{F}_0 through $x \in \Delta$ maps to the J_0-holomorphic curve in \mathcal{F}_0 through x and the J_t-holomorphic curve in \mathcal{F}_1 through x maps to the J_0-holomorphic curve in \mathcal{F}_1 through $g_t(x)$.

Then $\phi_0 = \text{id}$, $\phi_1(L) = \Delta$ and $\phi_t(\Delta)$ is disjoint from Δ for all t. Let $L_t = \phi_t^{-1}(\Delta)$, so L_t gives a smooth isotopy from L to Δ in $S^2 \times S^2 \setminus \Delta$.

Also, $\phi_{t*}(J_t)$ is tamed by the split form ω, and we see from this that $\phi_t(\Delta)$ is a symplectic submanifold for all t.

11
For fixed t, set $\omega_s = s\phi_t(\omega) + (1 - s)\omega$. This is a symplectic form for all $0 \leq s \leq 1$. It is clearly closed and is symplectic since it tames J_t. We note that Δ is symplectic for all ω_s and, if $t = 0$ or $t = 1$, L_t is Lagrangian with respect to all ω_s. Hence by an application of Moser’s theorem we can find a diffeomorphism ψ_t of $S^2 \times S^2$ such that $\psi_t^* (\omega) = \phi_t^* (\omega)$. The ψ_t can be chosen to vary smoothly with t, to fix Δ and such that $\psi_0 = \text{id}$ and ψ_1 fixes L_t. To see this, we recall that Moser’s method involves writing $\omega_s = \omega_0 + d\alpha_s$ and studying the flow of the vectorfield X_s defined by $X_s \cdot \omega_s = \frac{d\alpha_s}{ds}$. The definition implies that $L_{X_s} \omega_s = d\left(\frac{d\alpha_s}{ds}\right) = \frac{d\omega_s}{ds}$. We have the freedom in this construction to add any smooth family of exact 1-forms β_s to the α_s. These β_s can be chosen such that $\alpha_s + \beta_s$ vanishes on the symplectic normal bundle to Δ and, if $t = 0$ or $t = 1$, on the tangent bundle to L_t. Then the flow fixes Δ and, if $t = 0$ or $t = 1$, also fixes L_t.

Thus $\psi_t(L_t)$ is a Lagrangian isotopy from L to $\overline{\Delta}$ inside $S^2 \times S^2 \setminus \Delta$ as required.

To show that the space \mathcal{L} of Lagrangian spheres is contractible, by applying a result of R. S. Palais [22] it suffices to show that $\pi_k(\mathcal{L}) = 0$ for all integers $k \geq 0$. Thus Theorem 2 reduces to the following.

Theorem 12 Given a family of Lagrangian spheres $L_p \subset S^2 \times S^2 \setminus \Delta$ for $p \in S_k$ there exists a family of Hamiltonian isotopies of $S^2 \times S^2$ which fix Δ and map L_p onto $\overline{\Delta}$.

This follows exactly as Theorem 1 for $T^* S^2$ by applying the full parameterized version of Theorem 7 once we establish the analogue of Lemma 10, that is, we need to show the following.

Lemma 13 There exists a family of tame almost-complex structures J_p on $S^2 \times S^2$ such that each curve in the corresponding foliations \mathcal{F}_0 and \mathcal{F}_1 intersects L_p transversally in a single point. The almost-complex structures J_p can be taken to agree with J_0 near Δ.

12
Proof of lemma We briefly recall the construction of the almost-complex structures in [15]. Associated to each \(p \in S^k \) and positive integer \(N \) there exists a tame almost-complex structure \(J_{p,N} \) on \(S^2 \times S^2 \) which corresponds to stretching the neck to length \(N \) along the boundary of a small tubular neighborhood of \(L_p \). It is easy to arrange that the \(J_{p,N} \) vary smoothly with \(p \). For fixed \(p \) it was shown in [15] that after taking a subsequence as \(N \to \infty \) reparameterizations of \(J_{p,N} \)-holomorphic spheres in the corresponding foliations \(F_0 \) and \(F_1 \) converge smoothly to finite energy planes in \(T^* L_p \). For a suitable choice of the \(J_{p,N} \) these finite energy planes must be transverse to \(L_p \), in particular the \(J_{p,N} \) holomorphic foliations \(F_0 \) and \(F_1 \) are transverse to \(L_p \) for \(N \) sufficiently large. We claim that there exists an \(N \) such that the \(J_{p,N} \)-holomorphic foliations are transverse to \(L_p \) for all \(p \), thus establishing the lemma.

Suppose that the claim is false. Then for all \(j \) there exists a point \(q_j \in S^k \) and a \(J_{q_j,j} \)-holomorphic sphere \(C_j \) tangent somewhere to \(L_{q_j} \). A subsequence of \(\{ q_j \} \) will converge to some \(p \in S^k \). Now, there exist diffeomorphisms \(a_j : S^2 \times S^2 \to S^2 \times S^2 \) such that \(a_j(L_{q_j}) = L_p \) and \(a_j \) is an \((J_{q_j,j}, J_{p,j}) \)-biholomorphism on the tubular neighborhood of \(L_{q_j} \). Furthermore, after taking the subsequence, the \(a_j \) can be chosen to converge \(C^\infty \) uniformly to the identity and so \(I_j = a_j \) is a sequence of almost-complex structures on \(S^2 \times S^2 \) agreeing with \(J_{p,j} \) near \(L_p \) and which are tame for \(j \) large. We apply the compactness theorem from [2] exactly as in [15] to the \(I_j \)-holomorphic foliations \(F_0 \) and \(F_1 \). The same proof shows that reparameterizations converge to finite energy planes in \(T^* L_p \) transverse to \(L_p \). But this gives a contradiction as required since the \(I_j \) holomorphic spheres \(a_j(C_j) \) are tangent to \(L_p \).

4 Manifolds with 1-handles

We now consider the class of convex symplectic manifolds constructed by adding 1-handles to the unit cotangent bundle \(T^1 S^2 \). Our first observation is that
any such manifold M can be symplectically embedded in $(S^2 \times S^2, \omega)$, after perhaps scaling the symplectic form. This follows from the methods of [9]. We can arrange that the zero-section in T^1S^2 again becomes identified with $\overline{\Delta}$ and the boundary of M is a smooth hypersurface Σ of contact-type in $S^2 \times S^2$. More precisely one can think of M as a Stein manifold having a bounded plurisubharmonic exhaustion function which is zero on the zero-section in T^*S^2 and whose other critical points are nondegenerate and have Morse index 1. The symplectic form on M is the Kähler form of the plurisubharmonic exhaustion. Now, as in [6] or [7], 2-handles can be added to M to cancel the 1-handles and produce a Stein manifold symplectomorphic to $T^1S^2 = S^2 \times S^2 \setminus \Delta$. We will later use the fact that Σ is now a level-set of plurisubharmonic exhaustion on $S^2 \times S^2 \setminus \Delta$.

We plan to find families of almost-complex structures J_t on $S^2 \times S^2$ and diffeomorphisms $f_t : \Delta \to \Delta$ such that the J_t-holomorphic curves in F_0 through points x and the J_t-holomorphic curves in F_1 through $f_t(x)$ intersect on embedded spheres $L_t \subset M$ with $L_0 = \overline{\Delta}$ and $L_1 = L$. The almost-complex structures can be constructed by deforming J_0 in a neighbourhood of Σ and, for t close to 0 or 1, also in a neighbourhood of $\overline{\Delta}$ or L.

Suppose that we perform the operation of stretching-the-neck along Σ. That is, we symplectically identify a neighbourhood of Σ in $S^2 \times S^2$ with $((-\epsilon, \epsilon) \times \Sigma, d(e^\alpha))$, where α is a fixed contact form on Σ. We can then produce a manifold A_N by replacing this neighbourhood by $(-N, N) \times \Sigma$. Our original almost-complex structure can be extended over $(-N, N) \times \Sigma$ to be translation invariant and the symplectic form can be extended over $(-N, N) \times \Sigma$ such that A_N is symplectomorphic to $(S^2 \times S^2, \omega)$ via a symplectomorphism equal to the identity outside $(-N, N) \times \Sigma$ (for this see [20]). Under this symplectomorphism we can think of stretching the neck as studying a family of almost-complex structures J_N on $S^2 \times S^2$ which degenerate along Σ as $N \to \infty$.

At the same time, we can deform the almost-complex structure along the
boundary of tubular neighborhoods U_0 or U_1 of $L_0 = \overline{\Sigma}$ or $L_1 = L$ respectively. Stretching to length N_1 and N_2 on the contact hypersurfaces Σ and ∂U_i respectively we obtain almost-complex structures $J_{N,0}$ and $J_{N,1}$, where $N = (N_1, N_2)$. There exist smooth families of almost-complex structures $J_{N,t}$ connecting $J_{N,0}$ and $J_{N,1}$ which are fixed on the tubular neighborhoods of Σ and in the complement of M.

Following the work of H. Hofer, K. Wysocki and E. Zehnder, see [20], and as in [15], after taking suitable subsequences of $N = (N_1, N_2)$ in which both entries tend towards infinity, for $i, j = 0, 1$ families of $J_{N,i}$-holomorphic curves in F_j will converge to unions of finite energy planes as $N \to \infty$. The limiting finite energy planes can be chosen to foliate three symplectic manifolds with cylindrical ends, namely the completion W of the complement of M in $S^2 \times S^2$ with an end symplectomorphic to the negative symplectization of Σ, that is $((-\infty, 0) \times \Sigma, d(e^t\alpha))$, the completion of U_i, which will be a copy of T^*S^2, and the completion of $M \setminus U_i$ with two ends symplectomorphic to the positive symplectization of Σ and the negative symplectization of the boundary of U_i. A priori these foliations depend upon the subsequence $(N_1, N_2) \to \infty$. For the relevant compactness result see [2]. Further facts about finite energy curves, such as definitions, asymptotic convergence to Reeb orbits and Fredholm properties can be found in the series of papers [17], [18], [19].

The foliations of the completion of U_i were determined in [15]. For U_i and its almost-complex structure suitably chosen, the Reeb flow on ∂U_i is foliated by closed orbits, and exactly one curve in each foliation is asymptotic to each closed orbit. Also, each curve in the foliation from F_0 intersects in a single point each curve in the foliation from F_1 provided that the curves have different asymptotic limits. Another result coming from the analysis in [15] is that the curves in both foliations are transverse to the zero-section, and it follows that the curves in the foliations of $S^2 \times S^2$ are transverse to L_i for N sufficiently large.
By the positivity of intersections, any intersections of limiting finite energy planes must also be seen as intersections of holomorphic spheres in the foliations \mathcal{F}_0 and \mathcal{F}_1. It follows that finite energy curves in the two limiting foliations of W and the completion of $M \setminus U_i$ either have the same image or are disjoint. For, if any of these curves were to intersect in an isolated point we could find $J_{N,i}$-holomorphic curves in \mathcal{F}_0 and \mathcal{F}_1, for N sufficiently large, with intersection number at least two. There would be one intersection point near our point in W or $M \setminus U_i$ and another inside U_i. This gives a contradiction. Thus in particular the two foliations of W must coincide. Two curves in different homotopy classes which are disjoint in the completion of $M \setminus U_i$ and U_i must be asymptotic to the same periodic orbit in ∂U_i and come from taking a limit of $J_{N,i}$-holomorphic curves through the same point of Δ. The resulting finite energy curves in W coincide.

We can also obtain finite energy foliations of W and the completion of M by stretching the neck only along Σ and studying limits of $J_{N,i}$-holomorphic curves. For $t = i = 0$ or 1, for each fixed N_2 there exists a subsequence $N_1 \to \infty$ such that in the limit we obtain foliations of W and the completion of M. We define a function F such that the $J_{N,i}$-holomorphic curves restricted to U_i and W are uniformly ϵ-close to their limit as $N_1 \to \infty$ for $N_1 \geq F(N_2)$. After taking another subsequence, for N_2 sufficiently large we may assume that these foliations of the completion of M will consist of curves transverse to L_i (since near L_i the curves converge to the limiting curves in the completion of U_i). We fix this N_2 and look at the families of almost-complex structures $J_{N,t}$ connecting $J_{N,i}$ where now $N = (N, N_2)$. For each N, t we have corresponding foliations of $S^2 \times S^2$ and for subsequences $N \to \infty$ obtain foliations of W and the completion of M.

Regarding the resulting foliations of W, we will use the following lemma, which will be proven at the end of the section. Suppose that the contact form α on Σ and the almost-complex structure on W are chosen generically so that
periodic orbits of the Reeb flow on Σ are isolated and embedded finite energy curves in W appear in families whose dimension is as predicted by the index theorem, see [8] and [19].

Lemma 14 The deformation index of generic finite energy curves C in the foliation of W satisfies $\text{index}(C) \leq 2$.

Since 2-dimensional families of curves are needed to foliate W, this lemma implies that all finite energy planes sufficiently close to a curve C in our foliation actually appear in the foliation. In particular, if two finite energy foliations of W have a generic curve in common then they must coincide.

The following is the key proposition.

Proposition 15 There exists an N and diffeomorphisms $f_{N,t}$ of Δ such that the spheres L_i given by intersecting the $J_{N,t}$-holomorphic sphere in F_0 through points $x \in \Delta$ with the $J_{N,t}$-holomorphic sphere in F_1 through $f_{N,t}(x) \in \Delta$ lie in M. Also, $L_0 = \overline{\Delta}$ and $L_1 = L$.

Proof Fix now a subsequence $N \to \infty$ such that the $J_{N,t}$-holomorphic curves C_i through points x_i (in F_0 or F_1) all converge, where $t_i = \frac{i}{n}$, $1 \leq i \leq n$ and $x_i \in \Delta$. Choosing n sufficiently large and points x_i such that the curves C_i and C_{i+1} are disjoint in M for all i, we can redefine the $J_{N,t}$ on M such that for $t_i \leq t \leq t_{i+1}$ either C_i or C_{i+1} is $J_{N,t}$-holomorphic for all N. Suppose that for some t the curves C_t are $J_{N,t}$-holomorphic for all N. Then, taking subsequences and limits as $N \to \infty$, the foliations of W corresponding to t and t_i have a curve in common, and therefore must coincide by Lemma 14. More generally, we see that for any t and convergent sequence of $J_{N,t}$-holomorphic spheres, the reparameterized curves in W must converge to the same foliations as for $t = 0, 1$. In particular the foliations coming from F_0 and F_1 coincide.

We now study the foliations F_0 and F_1 corresponding to the family of almost-complex structures $J_{N,t}$ on $S^2 \times S^2$ for large N. As in section 3 we can find
corresponding diffeomorphisms $f_{N,t} : \Delta \to \Delta$ such that $\overline{\Delta} = L_0$ consists of the intersections of $J_{N,0}$-holomorphic spheres in \mathcal{F}_0 through points $x \in \Delta$ with the spheres in \mathcal{F}_1 through $f_{N,0}(x)$, and $L = L_1$ consists of the intersections of $J_{N,1}$-holomorphic curves in \mathcal{F}_0 through points $x \in \Delta$ with the spheres in \mathcal{F}_1 through $f_{N,1}(x)$. By the result in section 2 we may assume that $f_{N,t}(x) \neq x$ for all x, t. As $N \to \infty$, the convergence of $J_{N,0}$ and $J_{N,1}$-holomorphic spheres implies that we may assume that the $f_{N,0}$ and $f_{N,1}$ converge to continuous maps $f_{\infty,0}$ and $f_{\infty,1}$ and hence that the $f_{N,t}$ converge to maps $f_{\infty,t}$ satisfying $f_{\infty,t}(x) \neq x$ for all t and x.

Suppose that the proposition is false. Then for each N there exists a t_N and $x_N \in \Delta$ such that the J_{N,t_N}-holomorphic sphere in \mathcal{F}_0 through x_N intersects the J_{N,t_N}-holomorphic sphere in \mathcal{F}_1 through $f_{N,t_N}(x_N)$ inside W. Taking a subsequence of $N \to \infty$ suppose that $t_N \to t$ and $x_N \to x$ so $f_{N,t_N}(x_N) \to f_{\infty,t}(x) \neq x$. Also, a limiting finite energy curve through the point x will intersect a limiting curve through $f_{\infty,t}(x)$ inside W. But limits of the J_{N,t_N}-holomorphic spheres again give foliations of W, and since for each N sufficiently large the J_{N,t_N}-holomorphic foliations contain a $J_{N,t}$-holomorphic sphere these foliations are again standard, giving a contradiction as required.

Following the method of section 3, we can find a family of symplectic forms ω_t on $S^2 \times S^2$ such that L_t is Lagrangian with respect to ω_t. The ω_t restrict to exact symplectic forms on M, say $\omega_t = d\alpha_t$, which tame J_t. In a tubular neighborhood $V = (-\epsilon, 0) \times \Sigma$ of the boundary $\Sigma = \{0\} \times \Sigma$ of M, define a function $\chi : V \to [0, 1]$ such that $\chi(r, y) = 0$ for r close to $-\epsilon$ and $\chi(r, y) = 1$ for r close to 0. Then, first scaling α_t if necessary, we can replace it by $\beta_t = (1 - \chi)\alpha_t + \chi e^r \alpha$ in V. The new form $\omega_t = d\beta_t$ will still be symplectic and tamed by J_t (for α_t suitably scaled) but now agrees with ω near Σ. Assuming V to be disjoint from all L_t, the submanifolds L_t will still be Lagrangian with respect to ω_t.

We now apply Moser’s method as in section 3 to find a symplectomorphism
between \((M, \omega_1)\) and \((M, \omega)\) and thereby isotope the \(L_i\) into Lagrangian sub-manifolds of \((M, \omega)\). As before, this can be arranged to fix \(L_0\) and \(L_1\) and now also the neighborhood \(V\). Thus it gives our Lagrangian isotopy as required.

Proof of Lemma 14

Let \(C\) be a finite energy curve in the foliation of \(W\). The curve \(C\) will be one component of a limit of holomorphic spheres. The other components can be assumed to be curves \(D_i\) in the symplectization of \(\Sigma\) and curves \(E_j\) in the completion of \(M\).

An analysis of Chern classes as in [15] shows that only one component of a limit can intersect \(\Delta\). Since \(W \setminus \Delta\) admits a plurisubharmonic function approaching \(+\infty\) towards \(\Delta\) and a constant towards the negative end, by the maximum principle there are no finite energy curves lying entirely in \(W \setminus \Delta\). Therefore the limiting curve has only one component in \(W\), and, since the finite energy curves are limits of curves of genus 0, the \(D_i\) and \(E_j\) have only one positive asymptotic limit.

We recall that the index formula for a finite energy curve \(F\) depends upon a trivialization of the contact planes along its asymptotic limits (which are Reeb orbits in certain contact manifolds). We can then define a Conley-Zehnder index for each asymptotic limit and a Chern class \(c_1(F)\) relative to these trivializations. Suppose that the positive asymptotic limits have Conley-Zehnder indices \(\mu_k^+\) for \(1 \leq k \leq m\) and the negative asymptotic limits have index \(\mu_l^-\) for \(1 \leq l \leq n\). If the asymptotic limits are nondegenerate the formula for the deformation index of \(F\) modulo reparameterizations is

\[
\text{index}(F) = -(2 - m - n) + 2c_1(F) + \sum_{k=1}^{m} \mu_k^+ - \sum_{l=1}^{n} \mu_l^- .
\]

In our case, a global trivialization of the contact planes in \(T^1S^2\) extends over any 1-handles to a trivialization of \(\xi = \{\alpha = 0\}\) on \(\Sigma\) and we compute our indices relative to this. Then the curves in the symplectization of \(\Sigma\) and the completion of \(M\) have Chern class 0 and our curve \(C\) has \(c_1(C) = 2\).
A curve E_j has a single positive asymptotic limit. If this has index μ_j^+ then we obtain

$$\text{index}(E_j) = -1 + \mu_j^+. $$

But for a generic choice of almost-complex structure this index must be non-negative and so $\mu_j^+ \geq 1$ for all j.

Suppose that a curve D_i has a positive asymptotic limit with index μ_i^+ and m_i negative asymptotic limits with index μ_{ik} for $1 \leq k \leq m_i$. Then the index formula becomes

$$\text{index}(D_i) = -1 + m_i + \mu_i^+ - \sum_{k=1}^{m_i} \mu_{ik}. $$

Again generically this index must be nonnegative. Therefore if all of the negative asymptotic limits are positive asymptotic limits of curves E_j we obtain $\mu_i^+ \geq 1$. By an induction on the number of levels of the limiting finite energy curve we deduce that in fact $\mu_i^+ \geq 1$ for all curves D_i.

Finally we look at C. It has only negative asymptotic limits and if these have index μ_l^- for $1 \leq l \leq n$ then

$$\text{index}(C) = 2 + n - \sum_{l=1}^{n} \mu_l^-. $$

But all of these negative asymptotic limits are positive limits of curves D_i or E_j. Hence $\mu_l^- \geq 1$ for all l and so $\text{index}(C) \leq 2$ as required.

5 Proof of Theorem 4

In this section we study the symplectic manifold W, which is a plumbing of two copies of T^*S^2. Namely we take two copies of T^*S^2 and identify the cotangent fibers projecting to a disk D in S^2 with a product $D \times E$ in each copy. We then identify the two copies of $D \times E$, preserving the product structure but reversing the factors. Alternatively W can be realized as a Stein manifold by adding a
2-handle to a disk bundle T^3S^2 along the boundary of one fiber, a Legendrian curve for the natural choice of contact structure.

In any case, W is naturally a symplectic manifold with symplectic form ω_0 and contains two Lagrangian spheres L_1 and L_2 corresponding to the two zero-sections. We will think of its non-compact end as a copy of $[0, \infty) \times M$ where M carries a contact structure with contact form α and the symplectic structure on the end is given by $\omega = d(e^\alpha)$.

The manifold M is a Lens space $L(3, 2)$. The contact form can be described as follows.

Let S be the 3-sphere given by

$$S = \{(z_1, z_2) \in \mathbb{C}^2 | H(x) = 1\}$$

where

$$H(x) = |z_1|^2 + \frac{1}{r^2} |z_2|^2$$

and equipped with the contact form $\lambda|_S$ where

$$\lambda = \frac{i}{4} \sum_{j=1}^{2} (z_j d\bar{z}_j - \bar{z}_j dz_j).$$

Let $r^2 > 1$ and irrational, and periodic orbits $p_0 = \{z_2 = 0\} \cap S$ and $p_1 = \{z_1 = 0\} \cap S.$

Lemma (see [16] Lemma 1.6) *The associated Reeb vectorfield posesses precisely two periodic orbits p_0 and p_1. They are nondegenerate and have Conley-Zehnder indices $\mu(p_0) = 3$ and $\mu(p_1) = 2n + 1$ where $n < r^2 + 1 < n + 1.$*

Now we observe that S and $\lambda|_S$ are invariant under the map $\sigma: (z_1, z_2) \mapsto (e^{3\pi i} z_1, e^{4\pi i} z_2)$ and so project to $L(3, 2)$ to give the contact form α. The orbits p_0 and p_1 triple cover periodic orbits x_0 and x_1 on our $L(3, 2)$. Let X be the corresponding Reeb vectorfield.

Our proof will proceed as follows. On $[0, \infty) \times M$ we choose a tame almost-complex structure J which is translation invariant, preserves the contact planes
on M and satisfies $J(\frac{\partial}{\partial t}) = X$. Throughout the proof we will fix this almost-complex structure. It can be extended to a tame almost-complex structure J on W and for each extension we will describe a foliation of W by finite energy planes asymptotic to multiple covers of x_0. Let $L \subset W$ be a Lagrangian sphere homotopic to L_1. Then we pay specific attention to the pattern of the foliation relative to L when we change J by stretching the neck near L. This is all done in section 5.1.

In section 5.2, using our holomorphic foliations we can construct plurisubharmonic exhaustion functions on W. These functions will have exactly one minimum and two critical points of index 2. It will turn out that after stretching the neck along L, the unstable manifold of one critical point will be disjoint from L.

All such plurisubharmonic exhaustions give isotopic symplectic structures on W. The final part of the proof, in section 5.3, will use these isotopies to construct the symplectomorphism needed for our theorem. Of course Theorem 1 will also be used, in a form which says that a Lagrangian sphere disjoint from the unstable manifold of one critical point is Hamiltonian isotopic to the stable manifold of the other critical point.

5.1 Finite energy holomorphic curves in W

5.1.1 Finite energy foliations

As stated above, W admits a foliation by finite energy planes. More specifically the following is true.

Theorem 16 For any tame extension J, the almost-complex manifold (W, J) can be foliated by finite energy planes. Exactly three planes in the foliation, E_0, E_1, E_2, are asymptotic to x_0. The other finite energy planes are all asymptotic to $3x_0$. After choosing orientations for L_1 and L_2 we may assume that $E_i \cdot L_j = -\delta_{ij}$ and $E_0 \cdot L_j = 1$ for $i, j = 1, 2$.

22
Proof

This is very similar to the proof in [14], (which of course is heavily reliant on the series of papers [17], [18], [19]) but the arrangement of finite energy planes is different to the situation covered there.

The same reasoning though, originating in the works of H. Hofer, K. Wysocki and E. Zehnder, [16], does imply that there is a 2-dimensional moduli space of unparameterized disjoint embedded finite energy planes asymptotic to $3x_0$. An S^1 family of these planes lie in $[0, \infty) \times M$ and each plane in the family touches $\{1\} \times M$ in a single point. Choosing R large, this S^1 family will intersect $\{R\} \times M$ in an S^1 family of circles, a 2-torus, which bounds a solid torus U containing the periodic orbit x_0. Let B be the intersection of the S^1 family of finite energy planes with $[0, R] \times M$. Then a small perturbation of $B \cup U$ is a pseudoconvex hypersurface bounding a domain V Stein homotopic to W. In fact the perturbation of $B \cup U$ can be isotoped into $\{R\} \times M$ through a family of pseudoconvex hypersurfaces.

We are interested in an extension of our moduli space to a family of finite energy planes foliating V. After the perturbation of B we may suppose that our S^1 family intersects B in a circle γ of complex tangencies. Other finite energy planes in our moduli space will intersect B in circles linking γ, see for example Figure 2 in [14]. Since M is an $L(3, 2)$, after choosing coordinates on U we may assume that the finite energy planes intersecting ∂U do so in $(3, 1)$ curves, where the first component represents the class of a longitude homotopic to x_0.

The planes in the moduli space intersecting U do not form a compact set. In fact, as in [14], bubbling occurs and sequences of finite energy planes asymptotic to $3x_0$ will converge to three finite energy planes E_0, E_1, E_2 asymptotic to x_0. (The topology of V implies that we now get bubbling into three planes, energy considerations imply that they are all asymptotic to x_0.) We call these rigid planes since the moduli space of finite energy planes asymptotic to x_0 modulo reparameterization has dimension 0. Together with the finite energy planes
Figure 1: flowlines in the cross-section A

asymptotic to $3x_0$ the rigid planes complete our foliation.

We notice as in [14] that V is homotopic to the intersections of the three rigid planes with V, after identifying their boundaries in U. (This implies that there is no further bubbling.) To check the intersection numbers, we can choose a convenient almost-complex structure J since the numbers are independent of the choice. In fact there is an S^1 subgroup of symplectomorphisms of W which on each cotangent bundle corresponds to the extension via differentials of the rotations of L_j about the axis through the intersection point $q \in L_1 \cap L_2$. Let q_1 and q_2 be the antipodal point of q in L_1 and L_2 respectively. If the almost-complex structure is invariant under these symplectomorphisms, then so are the rigid planes (as they appear only in dimension 0). Stokes’ Theorem implies that holomorphic planes cannot intersect our Lagrangians in circles (since they are symplectic and the symplectic form on W is exact) and so the rigid planes must intersect the two Lagrangians in fixed points of the S^1-action. A plane disjoint from the Lagrangians is homotopic to a plane in $[0, \infty) \times M$ where the asymptotic limit x_0 is not contractible. Therefore each rigid plane does indeed intersect a Lagrangian and we can order our planes so that $E_0 \cap L_j = \{q\}$, $E_1 \cap L_1 = \{q_1\}$ and $E_2 \cap L_2 = \{q_2\}$. Choosing orientations for L_1 and L_2 gives the theorem as required.

Topologically the intersections of our finite energy planes with U can be visualized as follows. We note however that this is an idealized picture. In practice holomorphic curves can have quite complicated tangencies with pseudoconvex hypersurfaces. In the next section we will use the technique of filling by holomorphic disks to ensure that the pattern we describe here does indeed occur.
We look at a cross-section A of U. The interior of A has three special points corresponding to the intersection of A with the rigid planes. By taking R sufficiently large, the rigid planes can be assumed to intersect $U \subset \{R\} \times M$ transversally. A finite energy plane intersecting ∂U hits ∂A in three points. Choosing a path from one of these points to one of the special points determines a 1-parameter family of finite energy planes intersecting the path. The intersections of these planes with A generate two more paths from our points in ∂A to the remaining special points. Conversely a path in our moduli space starting from a plane intersecting ∂U and converging to the bubbled planes generates three paths in A. Starting with other planes intersecting ∂U we can generate a vector field on A with elliptic points corresponding to the rigid planes. The vector field will necessarily have hyperbolic points corresponding to tangencies of finite energy planes with U. Assuming that there are no more elliptic points (which could occur if a finite energy plane became tangent to U from the outside) there must be two hyperbolic points and the various integral curves are illustrated in Figure 1. The three marked points on the boundary are the intersections of a typical finite energy plane with ∂A. With our choice of subscripts the central special elliptic point in Figure 1 corresponds to E_0. Notice that the same picture is obtained in each cross-section A_{θ} of U for $\theta \in S^1$ and we can continuously choose coordinates in each A_{θ} so that the elliptic points lie in the same position. But then the points on ∂A_{θ} corresponding to a fixed finite energy plane will rotate through $\frac{2\pi}{3}$ in these coordinates as θ moves once around. The integral curves leaving our points on A_{θ} can be chosen so that they correspond to the same family of finite energy planes for each θ. These integral curves will encounter a hyperbolic point for two values of θ, corresponding to a 1-parameter family in the moduli space becoming tangent to U twice before bubbling. Topologically this means that two curves in the plane must contract to the boundary and that the plane will bubble into three components.
5.1.2 Stretching the neck

In this subsection we consider which finite energy planes in the foliation will intersect L if we perform a stretching-the-neck operation to deform J along the boundary of a tubular neighborhood of L.

The almost-complex structure is replaced by other almost-complex structures J_N as in section 4 where Σ is now the boundary of a tubular neighborhood Z of our Lagrangian L, which of course is diffeomorphic to $\mathbb{R}P^3 = L(2,1)$. We fix a contact form on Σ as above, now quotienting S^3 by the map $\sigma : (z_1, z_2) \mapsto (-z_1, -z_2)$. Denote by y_0 and y_1 the corresponding Reeb periodic orbits on Σ. Note that this form and the corresponding Reeb vector field are nondegenerate unlike the Morse-Bott type form on ∂U_t used in section 4.

The stretching-the-neck procedure in section 4 applies again here to produce a finite energy foliation of the completed tubular neighborhood of L which is now identified with $T^*L = T^*S^2$. Since y_1 has large Conley-Zehnder index the finite energy curves must be asymptotic to y_0. The resulting foliation was first described in [13]. There are two finite energy planes asymptotic to y_0 and the remaining planes are asymptotic to $2y_0$. The planes asymptotic to y_0 have intersection number ± 1 with L. They are rigid in the sense that the corresponding moduli space has dimension 0.

Taking limits of finite energy planes in the holomorphic foliations of (W, J_N) also results in a collection of finite energy curves lying in a completion of $W \setminus Z$ and the symplectization of Σ equipped with suitable almost-complex structures. After taking subsequences and additional limits we also obtain a finite energy foliations of $W \setminus Z$.

Suppose that an embedded finite energy curve u in $W \setminus Z$ has one positive asymptotic limit mx_0 and k negative asymptotic limits asymptotic to $n_i y_0$, $1 \leq i \leq k$. The virtual dimension of the moduli space of finite energy curves
containing \(u \) modulo reparameterization is given by

\[
\text{index}(u) = -(2 - 1 - k) + \mu(mx_0) - \sum_{i=1}^{k} \mu(n_i y_0)
\]

where the \(\mu \) are Conley-Zehnder indices with respect to a suitable trivialization giving \(c_1(TW) = 0 \). For \(m, n_i \) not too large \(\mu(mx_0) = m \) and \(\mu(n_i y_0) = \lfloor \frac{n_i}{2} \rfloor + n_i \) where \(\lfloor z \rfloor \) denotes the greatest integer less than or equal to \(z \). Hence

\[
\text{index}(u) = m - 1 - \sum_{i=1}^{k} \left(\lfloor \frac{n_i}{2} \rfloor + n_i - 1 \right).
\]

Our assumption is that \(L \) is homotopic to \(L_1 \). Thus the limits of the \(J_N \) holomorphic rigid planes \(E_0 \) and \(E_1 \) must contain rigid planes in \(T^*L \). The components of the limits in \(W \setminus Z \) must have positive and negative asymptotic limits asymptotic to \(x_0 \) and \(y_0 \) respectively. It will turn out that these curves coincide for \(E_0 \) and \(E_1 \). Meanwhile, we next observe that the limiting curves corresponding to \(E_2 \) have no component in \(T^*L \). To see this, we note that for the component of the limit in \(W \setminus Z \) to have nonnegative index, since \(m = 1 \) its negative asymptotic limit can cover \(y_0 \) only once. Therefore any components in \(T^*L \) are rigid curves. But then the component of the limit of \(E_2 \) must coincide with a component of the limit of \(E_0 \) or \(E_1 \). In either case this implies that for \(N \) sufficiently large \(E_2 \) will intersect non-rigid \(J_N \)-holomorphic planes which intersect \(L \) close to \(E_0 \) or \(E_1 \), a contradiction. Therefore, crucially for us, the \(J_N \)-holomorphic rigid planes \(E_2 \) are disjoint from \(L \) for \(N \) sufficiently large.

We now look at a limit of \(J_N \)-holomorphic finite energy planes passing through a point \(p \in L \) disjoint from the rigid planes. We claim that the limiting curve has a single component in \(T^*L \) asymptotic to \(2y_0 \) and two components in \(W \setminus Z \), one a double cover of the component of the limits of \(E_0 \) or \(E_1 \) and the other the limit of the rigid planes \(E_2 \).

To justify the claim, we note that one component of the limit in \(T^*L \) must be a plane asymptotic to \(2y_0 \). The sum of the positive asymptotic limits of the limiting components in \(W \setminus Z \) is \(3x_0 \) and as in section 4, the negative asymptotic
limits of components of a limiting curve in \(W \setminus Z \) cover \(y_0 \) at least as many times as the positive asymptotic limits of the corresponding limit curve in \(T^*L \).

Suppose that a component of the limit in \(W \setminus Z \) with negative asymptotic limit \(2y_0 \) is embedded and the almost-complex structure is generic so the curve has nonnegative index. Then by the above formula the positive asymptotic limit must cover \(x_0 \) \(m = 3 \) times and index = 0. Thus such curves are isolated. But taking a limit as our initial point \(p \in L \) approaches a rigid plane, such limits must approach the limits of the \(E_i \), which is impossible. Therefore the limiting components in \(W \setminus Z \) with negative asymptotic limit \(2y_0 \) are multiple covers of the limits of \(E_0 \) and \(E_1 \), which must coincide. There is another component of the limit in \(W \setminus Z \) with positive asymptotic limit \(x_0 \). Since such curves are again isolated we see that this must coincide with the limit of the \(E_2 \) as required.

The claim implies that for \(N \) sufficiently large the nonrigid planes intersecting \(L \) will intersect \(U \) in two disjoint circles, one close to the intersection of \(U \) with \(E_0 \) and \(E_1 \) and homotopic to \(2x_0 \), the other close to the intersection with \(E_2 \).

5.2 Plurisubharmonic exhaustion functions

In this section we produce a filling (or foliation) of \(V \) by holomorphic disks with boundary on the perturbation of \(B \cup U \) and use it to construct a plurisubharmonic exhaustion for \(V \). The key property is that \(L \) will be disjoint from the unstable manifold of one of the two index 2 critical points.

Theorem 17 For any extension \(J \), the almost-complex manifold \((V, J) \) admits a plurisubharmonic exhaustion function with three critical points, one a minimum and the others of index 2. The Lagrangian \(L \) is disjoint from the unstable manifold of one of the index 2 critical points.

It would be convenient simply to use the intersections of \(V \) with finite energy planes as our filling. Unfortunately it seems hard to control the tangencies of
such planes with U. Therefore we singularly foliate U with surfaces, each of which in turn can be singularly foliated by the boundaries of holomorphic disks. Together with the finite energy planes intersecting B these will complete the filling.

Proof There exist S^1 families of J_N-holomorphic finite energy planes which divide the finite energy planes in the moduli space intersecting L from those lying entirely in some $[R, \infty] \times M$. As N approaches infinity the planes in this family can each be chosen to converge to a union of curves having a component in T^*L. Thus the planes in the family will converge to the curve in $W \setminus Z$ which is a double-cover of the limit of the J_N-holomorphic E_0 and E_1 and to the limit of E_2. Therefore, since the family is compact, for N sufficiently large the curves in the family will intersect U transversally in two families of circles, one homotopic to $2x_0$ and the other to x_0. The first family will foliate a torus I enclosing $(E_0 \cup E_1) \cap U$ and the second will foliate a torus enclosing $E_2 \cap U$.

We define vector fields on each $A_\theta \subset U$ looking exactly as described in the previous section, but not necessarily corresponding to the intersections of the A_θ with finite energy planes. The integral curves of our vector field converging to the intersection of a particular curve C with ∂U will form a surface diffeomorphic to a sphere with four disks removed. The four boundary components are the intersections of U with C, E_0, E_1 and E_2. Now, it is easy to adjust our vector field such that each of these surfaces intersect the torus I in the boundary of one of the finite energy planes in our S^1 family.

Next we use the theory of filling by holomorphic disks, see [5], [1], [7], [12], to singularly foliate each of the surfaces above by boundaries of holomorphic disks in V. The foliation extends the boundaries of C and the E_i and is unique, therefore it includes the intersection of the surface with I. The filling looks
approximately as in Figure 2. In particular since it includes the disk through I
the arrangement of the singular (hyperbolic) points p and q is as shown.

We construct a plurisubharmonic function by following [7], see also [13], [14].
We start by defining a function g which is constant on the holomorphic disks
in our filling. We now fix J = J_N for N suitably large. Recall that γ is the
circle of complex tangencies in \(B \subset \partial V \) and let \(T_1, T_2 \) be tori in \(U \) formed by
the boundaries of holomorphic disks passing through p and let \(S_1, S_2 \) be tori in
\(U \) formed by the boundaries of holomorphic disks passing through q. We label
things so that the inside of \(T_1 \) in \(U \) encloses \(S_1 \) and \(S_2 \). We define g to be a
Morse function on \(\gamma \) with a single minimum at 0 and a single maximum at 1. As
in [13] we define g to be constant on families of holomorphic disks converging to
points on \(\gamma \). These families of disks can be chosen to be parameterized either by
an interval with the disks converging to the points \(g^{-1}(t) \in \gamma \) for \(t \leq \frac{1}{4} \) or \(t \geq \frac{3}{4} \)
or alternatively by an interval with one end converging to a point \(g^{-1}(t) \in \gamma \) for
\(\frac{1}{4} < t < \frac{3}{4} \) and the other to a cusp-disk with boundary on \(T_1 \cup T_2 \). This defines
g on the disks passing through the complement of the insides of \(T_1 \) and \(T_2 \).

Inside \(T_2 \) we simply define g to be constant on 1-parameter families of disks
connecting the disks on which \(g = t \). Inside \(T_1 \) we again define g to be constant
on families of disks connecting the disks on which \(g = t \) and \(\frac{1}{4} < t < \frac{3}{8} \) or
\(\frac{5}{8} < t < \frac{3}{4} \). We also let \(g = t \) on intervals of disks connecting disks with
\(g = t \in [\frac{3}{8}, \frac{5}{8}] \) on one side and cusp-disks with boundary on \(S_1 \cup S_2 \) on the
other. Inside \(S_1 \) and \(S_2 \) we extend g to be constant on the 1-parameter families of
disks connecting the disks on which \(g = t \) as before. Altogether this defines
a function g whose level-sets are foliated by holomorphic disks.

Now, as in [7], see also [13], [14], the level-sets of g are Levi flat (foliated by
holomorphic curves) but we can perturb g such that they become pseudocon-

vex. Composing g with a sufficiently convex function on \(\mathbb{R} \) it becomes strictly
plurisubharmonic. Next set \(f = \max(g, h) \) where \(h \) is a function increasing
rapidly towards \(\partial V \). The function \(f \) can be smoothed to give a plurisubhar-
monic exhaustion. Investigating the pattern of holomorphic disks as in [13] we see that it has three critical points. There is an index 0 critical point near the minimum of g on γ and there are index 2 critical points near the maxima of g on $S_1 \cap S_2$ and $T_1 \cap T_2$. We call these points a and b respectively. The construction ensures that $f(b) > f(a)$. Furthermore $f < f(b)$ on all disks lying inside the hypersurface formed by the holomorphic disks intersecting I. Therefore L is disjoint from the unstable manifold of b as required, as it lies inside this hypersurface.

We close this section by remarking that since f provides a plurisubharmonic exhaustion of W (or more precisely an almost-complex manifold V Stein homotopic to W), we can adjust f near its minimum such that the stable manifolds of the two critical points are embedded spheres intersecting transversally at the minimum.

5.3 Symplectomorphisms

The plurisubharmonic function f from the previous section gives a symplectic form $\omega = -dd^c f$ on W where $d^c f = df \circ J$. This in turn gives us a vector field $v = \text{grad} f$ defined by $v \cdot \omega = d^c f$. By a suitable choice of $f = h$ near ∂V we may assume that v is complete in the sense that its positive integral flow exists for all time.

The stable manifolds of the two critical points are Lagrangian spheres with respect to the form ω. By Weinstein’s Lagrangian neighborhood theorem applied to a pair of transversally intersecting Lagrangians, a neighborhood of these two stable manifolds is symplectomorphic to a neighborhood of $L_1 \cup L_2 \subset (W, \omega_0)$. We then use [9] to imply the following.

Lemma 18 (W, ω) and (W, ω_0) are symplectomorphic via a symplectomorphism ψ taking the stable manifolds of the critical points a and b of f onto L_1 and L_2 respectively.
After perhaps adjusting f the following is also true. As above L denotes the Lagrangian sphere homotopic to L_1.

Lemma 19 There exists a symplectomorphism ϕ from (W, ω_0) to (W, ω) taking L onto a Lagrangian sphere disjoint from the unstable manifold of the critical point b of f.

Lemmas 18 and 19 together imply our Theorem 4. For, the one-parameter group of diffeomorphisms generated by $-v = -\text{grad} f$ give an isotopy (which is necessarily Hamiltonian) of $\phi(L)$ to a Lagrangian sphere in a tubular neighborhood of the stable manifold of the critical point a. Since this tubular neighborhood can be taken to be symplectomorphic to a unit cotangent bundle of S^2, Theorem 1 implies that a further Hamiltonian diffeomorphism maps the image of $\phi(L)$ onto the stable manifold of a itself. We denote the Hamiltonian diffeomorphism mapping $\phi(L)$ onto the stable manifold of a by χ. Then $\psi \circ \chi \circ \phi$ is the symplectomorphism required by Theorem 4.

Proof of Lemma 19

By choosing $f = h$ carefully near ∂V, now identified with the noncompact end of W, we may assume that $\omega = \omega_0$ outside of a compact subset of W. In fact, both forms are exact and we can write $\omega = \omega_0 = d\alpha$ where the 1-form α is identically zero outside of a compact set. Furthermore, since ω and ω_0 tame the same almost-complex structure, $\omega_t = (1-t)\omega_0 + t\omega$ is a symplectic form on W for all t.

Using Moser’s method, we observe that the compactly supported time-dependent vector field X_t defined by $X_t|\omega_t = \alpha$ satisfies $\mathcal{L}_{X_t}\omega_t = d\alpha$ and so its flow generates a symplectomorphism from (W, ω_0) to (W, ω).

We are interested in the image of L under such a symplectomorphism, we recall that L is initially disjoint from the unstable manifold of b and we want to ensure that this remains the case under the flow of X_t. Assume that a fixed tubular neighborhood Z of L is disjoint from the unstable manifold of b. It is
straightforward to adjust f to arrange that $f \geq 0$ and $Z \subset f^{-1}([0,r])$ for some $r < f(b)$. For the manipulation of plurisubharmonic functions see [7] or [6].

The composition of f with an increasing function $s : [0, \infty) \to [0, \infty)$ remains plurisubharmonic provided that $\frac{s''}{s'} \gg 1$. We choose s (and its derivatives) to be very small on $[0,r]$ but then to increase rapidly on (r, ∞). Thus we can replace f by another nonnegative plurisubharmonic exhaustion, still denoted by f, and having the property that $f|_Z < 1$. Further we arrange that $\omega(X,JX) \ll \omega_0(X,JX)$ on $f^{-1}([0,1])$ for all tangent vectors X, while $\omega(X,JX) \gg \omega_0(X,JX)$ on $f^{-1}([2,3])$ for all X and now $f(b) > 3$.

On the tubular neighborhood Z we have that ω and $d^c f$ are now uniformly small. Thus the length of X_t (relative to the Riemannian metric defined by ω_0 and J) remains bounded on this neighborhood for $t < \frac{1}{2}$ say. Therefore there exists a uniform ϵ (depending only upon ω_0, J and Z) such that the flow of L remains in Z for $t < \epsilon$. But for $t > \epsilon$ we can suppose that on $f^{-1}([2,3])$ the vector field X_t is closely approximated by $-\frac{1}{t}\text{grad}f$. Hence the flow of L remains in $f^{-1}([0,3])$ for all $0 \leq t \leq 1$ and so the symplectomorphism generated by X_t can indeed be arranged to leave L disjoint from the unstable manifold of b as required.

References

