Computing the Tension in a Cable

Turn to the figure below. Assume that a weight W hangs from a cable as shown. The cable is anchored firmly on the left and right. The respective angles the cable makes with the horizontal are α_{1} and α_{2} respectively. The tensions in the cable - the tension in a cable

is the magnitude with which the cable pulls-are T_{1} and T_{2} respectively.
Problem 1. Consider the weight W and the angles α_{1} and α_{2} as given and assume that the configuration depicted in the figure is stable. Draw a force diagram for the point at which the weight is suspended and use results of the section "Dealing with Forces" of Chapter 2 to express both T_{1} and T_{2} in terms of W and the angles α_{1} and α_{2}. Conclude that if $\alpha_{1}=\alpha_{2}$, then $T_{1}=T_{2}$.

Problem 2. Look up the addition formula for the sine and use it to simplify the expressions for T_{1} and T_{2} derived in Problem 1 to

$$
T_{1}=\frac{W \cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \quad \text { and } \quad T_{2}=\frac{W \cos \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}
$$

Problem 3. Assume that $W=500$ pounds, $\alpha_{1}=10^{\circ}$, and $\alpha_{2}=5^{\circ}$ and use your the formulas of Problem 2 to compute the tensions T_{1} and T_{2}. Repeat your computation of T_{1} and T_{2} with $W=1000$ pounds, $\alpha_{1}=5^{\circ}$, and $\alpha_{2}=4^{\circ}$. Finally, repeat the computations once more with $W=2000$ pounds and the angles $\alpha_{1}=4^{\circ}$ and $\alpha_{2}=2^{\circ}$.

Problem 4. The figure below is an abstraction of Image 6. It shows a cable pulling on a utility pole with a force of magnitude T at an angle β with the horizontal. Provide an

expression for the horizontal component of T. Let $T=20,000$ pounds, take β equal to $40^{\circ}, 30^{\circ}$, and 20°, and compute the magnitude of this horizontal component in each case. Do you think that this force is problematic in the context of the solution of the structural problem?

About Steel Cables. A $\frac{1}{2}$-inch diameter steel cable typically has a minimum breaking strength of about 20,000 to 25,000 pounds and can support a load between 4000 and 5000 pounds safely. For a $\frac{3}{4}$-inch diameter steel cable, these ranges are from about 45,000 to 50,000 pounds and 9,000 to 10,000 pounds.

About Utility Poles. The force that a vertical wooden pole can support depends on a number of factors including the type of wood, the thickness of the pole, the depth and quality of the foundation, and the height and direction at which the force is applied. The figure and table below provide very general guidelines (for applications in the U.S.).

Minimum Diameter of Pole
(in inches)
12.4
11.8
11.1
10.5
9.9

Length Range of Pole
(in feet)
45-125
45-125
40-125
40-125
35-125
.

Allowable Horizontal Load (in pounds)

10,000
8,700
7,500
6,400

