Quiz 9. April 20, 2011. Name

Preamble: Figure (a) depicts Alberti's floor in the $x-y$ plane (the unit of length is the foot). Figure (b) depicts the perspective image of the floor as drawn by an artist on a canvas in the $x-z$ plane (with the unit of length the inch). Alberti's instruction to the artist, expressed within the framework of

the given coordinate systems, is this rule: A point P with coordinates $P=\left(x_{0}, y_{0}\right)$ at any location in the $x-y$ plane (the unit of length here is the foot) with positive y-coordinate should be drawn at the point

$$
Q=\left(x_{1}, z_{1}\right), \text { where } x_{1}=12 \frac{2 x_{0}}{2+y_{0}} \text { and } z_{1}=12 \frac{8 y_{0}}{2+y_{0}},
$$

in the $x-z$ plane of the canvas (the unit of length here is the inch).

1. Let c be a constant and consider the line $y=22+8(x-c)$ in the $x-y$ plane. Take c to be some random number between -3 and 3 and sketch the line on the $x-y$ plane provided above. Check that the point $P=\left(\frac{t-22}{8}+c, t\right)$ is on the line for any positive t. Consider the perspective image Q of P in the $x-z$ plane and determine its coordinates by using Alberti's instruction.
2. A small bug crawls on the floor along the line $y=22+8(x-c)$ in the direction of the positive y-axis. Every minute or so, the artist draws the bug in perspective on his canvas. The artist notices that the points representing the bug are converging to a point on the canvas. What is this point? (Answer by first rewriting the coordinates of Q appropriately).
