Quiz 8. Math 10-270. April 4, 2012. Name

1. Let $f(x)=\sqrt{x}$. Make use of the definition of the derivative to explain why the two terms $(5+0.00003)^{\frac{1}{2}}-\sqrt{5}$ and $\frac{1}{2 \sqrt{5}}(0.00003)$ are nearly equal to each other.
2. Let $y=f(x)$ be a function and let $[a, b]$ be a closed interval on the x-axis over which the function is continuous. The definition of $\int_{a}^{b} f(x) d x$ (it is a number that depends on the function as well as a and b) is the result of a process. Describe this process precisely and distinguish along the way between the "working definition" of $\int_{a}^{b} f(x) d x$ and the true value of $\int_{a}^{b} f(x) d x$. Do so without mentioning rectangles or area and without referring to the Fundamental Theorem of Calculus.
3. Use the graph of $y=\sqrt{16-x^{2}}$ to evaluate $\int_{0}^{4} \sqrt{16-x^{2}} d x$.
