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1 Introduction

Let L ⊂ P (1, 2) ⊂ CP 2(R) \ CP 1(∞) ⊂ CP 2(R). Here CP 2(R) is complex
projective space equipped with the Fubini-Study symplectic form ω scaled
such that the area of a line is R, and CP 1(∞) is the line at infinity. The
polydisk P (1, 2) is a symplectically embedded product of disks D(1)×D(2) of
areas 1 and 2 respectively. Finally L is the Lagrangian torus ∂D(1)×∂D(2) ⊂
∂P (1, 2). We will also consider the symplectic manifold X = CP 2(R)]CP 2(1)
where X is the result of blowing up the ball in CP 2(R) of capacity 1 centered
at (0, 0) ∈ P (1, 2) and E = CP 2(1) is the exceptional divisor, a symplectic
sphere of area 1.

To fix notation, let (k, l) ∈ H1(L) denote the homology class k[∂D(1)] +
l[∂D(2)].

In this note we establish the following.

Theorem 1.1. R ≥ 3.

We will argue by contradiction and assume that such an embedding exists
in a CP 2(R) with R < 3. Then we consider the limits of various lines
as a stretching the neck operation is performed along the boundary of a
tubular neighborhood of the Lagrangian torus. The various possible results
are documented and all will eventually lead to a contradiction.

To perform a neck stretch we must choose a tubular neighborhood of
L. By Weinstein’s theorem a tubular neighborhood can be identified with a
neighborhood of the zero-section in T ∗L. We fix a flat metric on L and let
our neighborhood be a unit cotangent disk bundle with boundary Σ. The
Louville form on T ∗L restricts to a contact form on Σ and the associated Reeb
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vector field generates the geodesic flow (identifying tangent and cotangent
bundles using the metric). Then we choose a sequence of almost-complex
structures JN on CP 2(R). We may assume that these all coincide outside
of a neighborhood of Σ but (CP 2, JN) admits a biholomorphic embedding
of Σ × (−N, N) equipped with a translation invariant complex structure
mapping the Reeb vectors to the unit vectors to (−N, N). A sequence of JN

holomorphic spheres of fixed degree has a limit in the sense of [2]. This is
a holomorphic building whose components are finite energy curves mapping
into three symplectic manifolds with cylindrical ends, diffeomorphic to CP 2\
L, T ∗L and Σ× R.

2 Fredholm theory

For generic almost-complex structures finite energy curves appear in moduli
spaces of dimension determined by the asymptotic limits and the relative
homology class. We give the virtual indices of these moduli spaces in each
of our three manifolds with cylindrical ends.

Finite energy curves in X \ L can be compactified to give maps from
Riemann surfaces with boundary, where the boundary components map to
closed geodesics on L (with respect to the flat metric). There is an S1 family
of closed geodesics in each homology class (k, l) for k, l ∈ Z.

Suppose that such a curve C intersects CP 1(∞) in d points, counting
with multiplicity (in this case we will say that it has degree d), and has s
negative ends asymptotic to geodesics in the classes (ki, li) respectively for
1 ≤ i ≤ s.

Proposition 2.1. The deformation index of C modulo reparameterizations
is given by

index(C) = s + 6d− 2− 2(C • E) + 2
s∑

i=1

(ki + li).

Remark 2.2. For example, if s = 0 and d = C • E = 1 then index(C) = 2.
As s = 0 this moduli space makes sense for the almost-complex structures
JN . In this case the curves form the fibers of a nontrivial bundle X → CP 1.

If s = 0 and C •E = d− 1 then index(C) = 2d. Such curves are sections
of the above bundle with d ‘zeros’ (intersections with CP 1(∞)) and d − 1
‘poles’ (intersections with E). A unique curve in the class can be specified
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by fixing 2d constraint points, for example the d zeros, d − 1 poles and an
additional point to fix the phase.

For curves in T ∗L an index computation gives the following.

Proposition 2.3. The virtual index of a finite energy curve of genus 0 in
T ∗T 2 is given by

index(C) = 2s− 2

where s is the number of (positive) ends.

Finally we have the following.

Proposition 2.4. The virtual index of a finite energy curve of genus 0 in
Σ× R is given by

index(C) = 2s+ + s− − 2

where s+ is the number of positive ends and s− the number of negative ends.

3 Curves in T ∗L and Σ× R
We can choose the almost-complex structures on T ∗L and Σ × R indepen-
dently of any particular embedding and there are general results about the
holomorphic curves which exist for certain choices. The following proposition
follows from work of C. Wendl, [18], and observations in section 10 of [15].

Note that the action of T 2 on L by translation lifts to a T 2 action on T ∗L
which induces one on Σ×R. By the R action on Σ×R we mean translation
in the second factor.

Proposition 3.1. There exist compatible almost-complex structures on Σ×R
which are invariant under the T 2 ×R action and compatible almost-complex
structures on T ∗L which are invariant under the T 2 action. The almost-
complex structures have the property that holomorphic cylinders always have
both asymptotic limits on the same geodesic, if both ends are positive then
with opposite orientation. Immersed finite energy curves are automatically
regular.

Remark 3.2. All holomorphic curves considered in this paper will be either
embedded or will multiply cover embedded curves.
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4 A finite energy foliation

As mentioned in Remark 2.2, for each N < ∞ there exists a foliation of X
by JN holomorphic spheres in the class of a fiber F = [CP 1(∞)] − [E] of
the bundle X → E. Letting N → ∞ we find finite energy curves in X \ L.
Let us fix a countable dense set of points {pi} ∈ X \ L. For each N there
exists a unique curve CN

i in the fiber class intersecting pi. Taking a diagonal
subsequence of N →∞ we may assume that all CN

i converge as N →∞ to
holomorphic buildings having a component, denoted by Ci, passing through
pi. Positivity of intersection implies that these curves are either disjoint or
have identical image. Taking further limits of the Ci we obtain a finite energy
foliation F of X \ L, see [11].

Remark 4.1. Once we fix the subsequence N → ∞ such that all CN
i con-

verge, it is necessarily the case that the limiting components in X \L of any
convergent sequence of JN -holomorphic spheres form leaves of F . This also
follows immediately from positivity of intersection.

Proposition 4.2. Leaves of F consist of three kinds of curves.

1. Closed curves in the fiber class.

2. Planes of degree 0 asymptotic to (1, 0) geodesics.

3. Planes C of degree 1 with C•E = 1 and asymptotic to (−1, 0) geodesics.

Proof. We pick a point p ∈ X \ L and look at a limit of JN -holomorphic
spheres CN through p. The component of the limit through p is the leaf of
F through p, see Remark 4.1. If CN converges to a closed curve then it is of
type 1. Suppose then that the limit is a holomorphic building. The sum of
the areas of the components in X \ L is R− 1 < 2. Curves of degree 0 have
positive integral area and at most one component has degree 1. Therefore
there must be exactly two components in X \L. As there are no finite energy
planes in T ∗L (as there are no contractible geodesics) these components are
both planes, say C0 and C1, where C0 is of degree 0 and asymptotic to a
(k, l) geodesic and C1 is of degree 1 and asymptotic to a (−k,−l) geodesic.
We consider two cases.

Case 1: C0 • E = 0; C1 • E = 1.
Note that the intersection and area equalities imply that both of our

curves must be simple. Therefore we can compute

index(C0) = −1 + 2(k + l) ≥ 0



4 A FINITE ENERGY FOLIATION 5

area(C0) = k + 2l = 1.

and
index(C1) = 3− 2(k + l) ≥ 0

area(C1) = R− 1− (k + 2l) = R− 2.

Solving these equations gives k = 1, l = 0 and we get curves of types 2 and
3.

Case 2: C0 • E = 1; C1 • E = 0.
Now we compute

index(C0) = −3 + 2(k + l) ≥ 0

area(C0) = k + 2l − 1 = 1.

and
index(C1) = 5− 2(k + l) ≥ 0

area(C1) = R− (k + 2l) = R− 2.

Solving these we get k = 2, l = 0. In particular C0 is a, necessarily embedded,
plane asymptotic to a (2, 0) geodesic. However, no such planes exist. Indeed,
by automatic regularity, [18], any such plane appears in a 1-parameter family
asymptotic to a 1-parameter family of geodesics. But blowing down this
would give us a 1-parameter family of planes in C2 \ L asymptotic to (2, 0)
geodesics and all intersecting at a point. This is a contradiction as such
planes have intersection number 0.

Excluding Case 2 we have established the Proposition.

Proposition 3.1 gives the following clarification.

Corollary 4.3. If a sequence of JN holomorphic spheres converges to a non-
trivial holomorphic building then the components in X \ L consist of two
planes asymptotic to the same geodesic (with opposite orientation).

Lemma 4.4. F contains a unique leaf of degree 1 asymptotic to each (−1, 0)
geodesic.

Proof. Suppose not, then there are at least two such leaves P1 and P2 of
degree 1 and asymptotic to the same geodesic γ. The leaves each intersect
E transversally in points p1 and p2 respectively. Choose a circle σ ⊂ E
separating p1 from p2. Let Σ be the leaves of F which are components of
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limiting holomorphic buildings which intersect σ. We expect all but finitely
many leaves of Σ to be holomorphic spheres, but by Corollary 4.3 the planes
occur in pairs asymptotic to the same geodesic and so Σ can be compactified
to give a hypersurface in X separating p1 from p2. It follows that if P1 and
P2 can be compactified to give disks in X with the same boundary then one
of them must intersect Σ, but this is impossible as Σ consists of leaves in the
same foliation.

Corollary 4.5. There is a projection π : X → E whose fibers are (compact-
ified) leaves of F . The image of L is a circle in E and (1, 0) geodesics are
mapped to points.

Proof. On degree 1 leaves of F we define π simply to be the intersection with
E. The map π extends continuously to X be requiring it to be constant on
all leaves with the same asymptotic limit (with either orientation) and on
the geodesic asymptotic limit itself.

5 Degree d curves with point constraints

At least if we allow cusp-curves, then to any set of 2d points {qi} ∈ X
there exists a JN -holomorphic curve CN of degree d and with C •E = d− 1
intersecting each of the points. If the points are in sufficiently general position
then CN will be embedded and unique. We note that CN •F = 1, see Remark
2.2. Let us fix the 2d points on L and take a limit of the CN as N →∞.

The limiting holomorphic building will have multiple components in X \
L and T ∗L, we now document three lemmas describing their indices and
asymptotic behaviour. The first is special to our situation, the other two are
fairly general considerations given the first. By the index of a component
we will mean its constrained deformation index, the virtual dimension of the
moduli space of curves passing through the same point constraints.

Lemma 5.1. Let C̃ be a component of our limit which multiply covers a
simple finite energy curve C. Then index(C̃) ≥ index(C) ≥ 0.

Proof. The fact that index(C) ≥ 0 follows by assuming that our almost-
complex structures are regular. We first suppose that C̃ is a component in
X \L, which is a q-fold cover of C. Let s̃ and s be the numbers of ends of C̃
and C respectively, and let k = index(C). Then by Proposition 2.1, we see
that

index(C̃) = s̃− 2 + q(k − s + 2)
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as the degree, intersection number with E and total multiplicity of the ends
multiply by q under the cover.

Now, if C̃ and C have underlying domains Σ̃ and Σ respectively, where
Σ̃ and Σ are punctured Riemann spheres, then by the covering map Σ̃ → Σ
extends to a degree q map of CP 1. By the Riemann-Hurwitz formula this has
2(q−1) critical points, counted with multiplicity. Therefore s̃ ≥ qs−2(q−1)
and so index(C̃) ≥ qk as required.

In the case when C̃ maps to T ∗L or Σ × R the proof is easier since the
number of point constraints stays the same under covers but the number of
ends can only increase.

Let the constrained indices of our limiting components be given by I1, . . . , In

and the numbers of ends of the corresponding components by s1, . . . , sn. This
means that in the limiting holomorphic building there are 1

2

∑
si limiting

asymptotic geodesics, that is, each is a limit for two ends from different
components. Now, the virtual deformation index of the limiting holomor-
phic building is the same as the constrained deformation index of our closed
holomorphic curves, namely 0. This gives the following.

Lemma 5.2. ∑
i

Ii − 1

2

∑
i

si = 0.

Finally we have the following.

Lemma 5.3. si ≥ Ii for each i.

Proof. Suppose that sk < Ik for some k. For each remaining component let
s′i be the number of ends which are not matched in the limit with the kth
component. Then S =

∑
i6=k s′i =

∑
i si − 2sk and

∑
i6=k Ii =

∑
i Ii − Ik.

Therefore ∑

i 6=k

Ii − 1

2

∑

i6=k

s′i = sk − Ik < 0.

We claim that such an arrangement of components (that is, all except the
kth) give a holomorphic building G which generically should not exist.

We look at the moduli space of all n − 1 tuples of finite energy curves
having the same degrees and asymptotic behaviour as the components of G.
As all geodesics appear in S1 families there is a map from this moduli space
to (S1)S and the dimension of the image is bounded above by

∑
i 6=k Ii. Note
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that if a component happens to be a multiple cover then the ends move in
the same family as the ends of the covered curve, but by Lemma 5.1 the
index can only increase.

On the other hand, an element in this moduli space can fit together to
give a holomorphic building if and only if all corresponding ends match.
This means that the image of the above map should intersect a subset of
codimension 1

2

∑
i6=k s′i. Given the inequality above, by Sard’s theorem this

should not occur.

Let fi be a component of our limit with image in X \ L. As above we
denote its index and number of ends by Ii and si respectively, denote its
degree and intersection with E by di and ei, and the class of the asymptotic
geodesics by (ki

j, l
i
j).

Lemma 5.4.
∑

j lij = 0.

Proof. Proposition 2.1 gives

Ii = 6di − 2− 2ei + 2
∑

j

(ki
j + lij)

and the area formula is

area(fi) = Rdi − ei +
∑

j

(ki
j + 2lij).

As the area must be positive we can substitute for
∑

(ki
j + lij) to get

0 < Rdi − ei +
1

2
(Ii − si − 6di + 1 + 2ei) +

∑
j

lij

= (R− 3)di +
1

2
(Ii − si) + 1 +

∑
j

lij.

Now, the first term here is strictly negative (assuming R < 3) and by Lemma
5.3 the second term is nonpositive. Therefore, since it is integral,

∑
j lij ≥

0. Summing over all components in X \ L, the asymptotic geodesics must
represent the zero homology class in L, indeed, they bound the projection to
L of components in T ∗L. Hence

∑
i

∑
j lij = 0 and it follows that for each i

we have
∑

j lij = 0.



5 DEGREE D CURVES WITH POINT CONSTRAINTS 9

We recall that for all N the intersection CN • F = 1. Therefore, by
positivity of intersection, components in X \ L either have image equal to
a leaf of F or intersect the leaves transversally, the sum of the transversal
intersections of the limiting components with any given leaf is at most a single
point (it is possible that components in X \ L could avoid isolated leaves if
the intersections converge to L as N → ∞). Not all limiting components
are leaves of F as such leaves have degree equal to their intersection with E,
for curves in our class these numbers are different. Therefore we can find a
limiting component whose image does not lie in a single leaf. We write this
as a map f : Σ → X \ L, where Σ is again a punctured Riemann sphere. As
the intersections with the leaves are transversal in single points, composing
with π gives an embedding u = π ◦f : Σ → E. Suppose that f is asymptotic
to geodesics γi at its punctures. If the geodesic is in a class (k, l) with l = 0
then u approaches a point near the puncture and in fact can be extended
continuously across the puncture. On the other hand if l 6= 0 then the image
of u approaches π(L) near the puncture. As u is an embedding it follows that
there can be at most one such puncture, but in that case Lemma 5.4 gives
l = 0. In conclusion all ends are asymptotic to geodesics in classes (k, 0), the
embedding u : Σ → E extends to a degree 1 map from CP 1, and f is the
unique component which does not lie in a leaf of F .

The remaining components of the limiting holomorphic building fit to-
gether along their boundaries to form disks asymptotic to the γi. Positivity
of intersection again implies that all components of the disk asymptotic to
γi actually cover planes asymptotic to γi, or if they map to T ∗L then cover
the cylinder over γi. We conclude that f has at least 2d ends asymptotic to
geodesics γi passing through the points qi.

Now we study the bundle V = π−1(π(L)) → π(L). The fibers of V
consist of degree 0 and degree 1 planes meeting along the same geodesic,
that is V = V0 ∪ V1 ∪L where V0 is the union of degree 0 planes in F and V1

the union of the degree 1 planes. The image of f gives a section of V away
from Γ =

⋃
π(γi). The degree of the plane thus gives a locally constant map

Γ → {0, 1} and we claim that this map is in fact constant.
Indeed, let P0 and P1 be the degree 0 and 1 planes of F asymptotic to

the geodesic covered by a γi. Then near the puncture the finite energy curve
f is asymptotic to a cover of either P0 (if ki > 0) or P1 (if ki < 0), see
[8]. Therefore close to the puncture the image of f will intersect only either
degree 0 or only degree 1 planes, and so the section remains in V0 or V1 as
we pass a point of Γ. This justifies our claim.
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Now, if f if asymptotic to a geodesic in the class (k, 0) then the limiting
building must also contain a plane asymptotic to a cover of the plane in F
asymptotic to the corresponding geodesic in the class (−sign(k), 0). As f
has degree d it can therefore have at most d ends asymptotic to geodesics
in the class (k, 0) with k > 0. Therefore by the above claim and since f
has at least 2d ends we see that all ends are asymptotic to geodesics in a
class (k, 0) with k < 0. In summary, corresponding to each puncture of f
are various components of degree 0, each of which has area at least 1, and
perhaps some covers of degree 1 planes. Let L ≤ d be the sum of the degrees
of these components, then L is also the sum of the intersection numbers of
these components with E. Thus f has degree d−L and f(Σ)•E = d−1−L.

We can now compute

index(f) = s+6(d−L)− 2− 2(d− 1−L)+2
s∑

i=1

ki = s+4(d−L)+2
s∑

i=1

ki

and

area(f) = (d− L)R− (d− 1− L) +
s∑

i=1

ki

where f has s ≥ 2d ends, each covering a (1, 0) geodesic ki < 0 times. In
particular

∑s
i=1 ki ≤ −2d.

Solving for
∑s

i=1 ki in the first equation and substituting in the second
we get

area(f) = (d− L)R− (d− 1− L) +
1

2
(index(f)− s− 4(d− L))

= (d− L)(R− 3) + 1 +
1

2
(index(f)− s).

But as
∑s

i=1 ki ≤ −2d,

1

2
(index(f)− s) = 2(d− L) +

s∑
i=1

ki ≤ −2L

and area(f) ≥ 0, so

0 ≤ (d− L)(R− 3) + 1 +
1

2
(index(f)− s) ≤ (d− L)(R− 3) + 1− 2L.

Since L ≤ d, if R < 3 this implies that we must have L = 0, but then
3−R ≤ 1

d
and taking d sufficiently large we have a contradiction.
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Birkhäuser, Basel, 1999.



REFERENCES 12

[11] H. Hofer, K. Wysocki and E. Zehnder, Finite energy foliations of tight
three-spheres and Hamiltonian dynamics, Ann. of Math. (2) 157 (2003),
no. 1, 125–255.

[12] H. Hofer, K. Wysocki and E. Zehnder, The dynamics on three-
dimensional strictly convex energy surfaces, Ann. of Math. (2) 148
(1998), no. 1, 197–289.

[13] M. Hutchings, An index inequality for embedded pseudoholomorphic
curves in symplectizations, J. Eur. Math. Soc. (JEMS), 4 (2002), no. 4,
313–361.

[14] M. Hutchings, The embedded contact homology index revisited, New
perspectives and challenges in symplectic field theory, 263–297, CRM
Proc. Lecture Notes, 49, Amer. Math. Soc., Providence, RI, 2009.

[15] M. Hutchings and M. Sullivan, Rounding corners of polygons and the
embedded contact homology of T 3, Geom. Topol., 10 (2006), 169–266.

[16] D. McDuff and D. Salamon, J-holomorphic curves and symplectic
topology. American Mathematical Society Colloquium Publications, 52.
American Mathematical Society, Providence, RI, 2004.

[17] J. Robbin and D. Salamon, The Maslov index for paths, Topology, 32
(1993), 827–844.

[18] C. Wendl, Automatic transversality and orbifolds of punctured holo-
morphic curves in dimension four, to appear in Comment. Math. Helv.,
preprint arXiv:0802.3842.


