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Abstract

We survey some symplectic embedding results focussing on the case
when both domain and range are products of 4-dimensional ellipsoids
or polydisks with Euclidean space. The stabilized problems have ad-
ditional flexibility but some 4-dimensional obstructions persist.

1 Introduction

The symplectic embedding problem is among the easiest to state in sym-
plectic topology. Nevertheless it provides a model situation to search for
boundaries between symplectic rigidity and flexibility, and to test the power
of symplectic invariants.

Problem. Let U and V be open subsets of R2n. Find the infimum of
λ > 0 such that there exists a symplectic embedding f : U ↪→ λV .

Saying that f is symplectic means that f∗ω = ω, where ω =
∑
dxi ∧ dyi

is the standard symplectic form on R2n.
The only classical obstruction to symplectic embeddings is volume. Note

that 1
n!ω

n is the standard volume form and so symplectic embeddings are
volume preserving. Hence if there exists a symplectic embedding U ↪→ λV
then necessarily vol(U) ≤ λ2nvol(V ).

We can say that an embedding problem is flexible if this estimate is sharp.
We know of rather few nontrivial examples of flexible embedding problems.
On the other hand rigidity for symplectic embeddings was discovered only
in 1985 by Gromov in his seminal work on the subject.

Define a ball of capacity c by

B2n(c) = {
n∑

i=1

π(x2i + y2i ) < c}

and a cylinder of capacity c by

Z2n(c) = {π(x21 + y21) < c}.
∗The author is partially supported by grant # 317510 from the Simons Foundation.
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Nonsqueezing Theorem.(Gromov, [8]) B2n(a) ↪→ Z2n(c) if and only
if a ≤ c.

There are now several proofs of the Nonsqueezing Theorem. Gromov’s
original proof applied his theory of pseudoholomorphic curves and the sub-
sequent developments we describe here follow basically the same scheme.

It is well known in the field that pseudoholomorphic curves can be an
especially useful tool when we work in dimension 4, due to positivity of in-
tersection. This gives a topological criterion for the curves to be embedded.
As a consequence, much more is known about symplectic embeddings in
dimension 4. In particular Hutchings has developed a powerful set of em-
bedding obstructions coming from his Embedded Contact Homology, ECH,
see [15] for example.

In the current article we describe some first steps in extending 4-dimensional
theorems to higher dimension. We will simply take a 4-dimensional problem
and stabilize it by adding Euclidean factors to both the domain and range.
In some cases the 4-dimensional rigidity generalizes directly to the stabilized
case, but in others we will see that there is significant additional flexibility.

In section 2 we describe the situation for ellipsoid embeddings and in sec-
tion 3 the polydisk situation. For general U and V however, the embedding
problem remains broadly open, even in dimension 4.

2 Embedding ellipsoids

For given ai ∈ (0,∞] we define a symplectic ellipsoid by

E(a1, . . . , an) = {
n∑

i=1

π

ai
(x2i + y2i ) < 1}.

Then we have E(c, . . . , c) = B2n(c) and E(c,∞, . . . ,∞) = Z2n(c).
In this section we discuss the case when our domain U is an ellipsoid

and the range V is either a ball or a stabilized ball. In dimension 4 there
are also solutions when the range is a cube (due to Frenkel–Müller, [7]) or
certain polydisks (due to Cristofaro-Gardiner–Frenkel–Schlenk, [3]) but in
these cases only conjectures for the corresponding stabilized problems, see
[10], Conjecture 1.19, and [3], Conjecture 1.4.

The solution to the problem of 4-dimensional ellipsoid embeddings into
a ball can be expressed in the function

e2(x) = inf{c > 0|E(1, x) ↪→ B4(c)}.

By rescaling and reordering the factors we may assume x ≥ 1. The descrip-
tion of the function e2 is due to McDuff and Schlenk and reveals both the
beauty and intricate nature of the symplectic embedding problem.

To give their solution we need to fix some notation. First define the
sequence {gk}∞k=0 where g0 = 1 and gk for k ≥ 1 is the kth odd index
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Fibonacci number. Hence gk is the sequence beginning 1, 1, 2, 5, 13, 34, . . . .
Then we can define sequences {ak}∞k=0 and {bk}∞k=0 by ak = (

gk+1

gk
)2 and

bk =
gk+2

gk
. These are increasing sequences with a0 < b0 < a1 < b1 < . . . and

limk→∞ ak = limk→∞ bk = τ4, where τ is the golden ratio.

Theorem 2.1 (McDuff–Schlenk, [17], Theorem 1.1.2). For 1 ≤ x < τ4 the
function e2(x) is linear on the intervals [ak, bk] and constant on intervals
[bk, ak+1] with e2(ak) =

√
ak.

If x ≥ 8 1
36 then e2(x) =

√
x.

In other words, the first part of the graph is an infinite staircase with
ever shorter steps converging to τ4. Meanwhile if x ≥ 8 1

36 the embedding
problem is flexible. For brevity we have not tried to describe the graph over
the interval (τ4, 8 1

36). Here there are eight ‘exotic’ additional steps. It turns
out that the ECH capacities give a sharp obstructions in all cases, see [18].

In McDuff and Schlenk’s proof, the existence of holomorphic curves is
used both to obstruct embeddings and construct the optimal embeddings.
Thus the embeddings themselves are completely non-explicit. Elementary
embedding constructions were the subject of the earlier book [21] of Schlenk.
In terms of concrete embeddings in dimension 4 the methods Schlenk de-
scribes have not generally been improved upon (although see [19] for the vol-
ume filling embeddings E(1, k2) ↪→ B4(k) when k ∈ N). These ‘folded’ em-

beddings are sufficient to read off the asymptotic behavior limx→∞
e2(x)√

x
= 1,

although for x > 2 (that is, when the inclusion map is not optimal) they
never reproduce the embeddings established in Theorem 2.1.

Given an n ≥ 3 the stabilized embedding function is given by

en(x) = inf{c > 0|E(1, x)× R2(n−2) ↪→ B4(c)× R2(n−2)}.

By taking product embeddings we see immediately that en(x) ≤ e2(x) for
all x, n and it would be natural to guess that we always have equality. This
notion was disproved in a remarkable paper of Guth [9] where an explicit
construction demonstrated the extra flexibility present in higher dimension.
This construction was improved by the author in [10] using folding methods
as in [21] to obtain the following.

Theorem 2.2 (Hind, [10], Pelayo–Ngo.c, [20]). E(1, x)×R2(n−2) ↪→ B4(c)×
R2(n−2) whenever c > 3x

x+1 .

The paper [10] dealt only with compact subsets. To obtain embeddings
of all of E(1, x)× R2(n−2) we use the technique from Theorem 4.3 in [20].

The graph of 3x
x+1 intersects

√
x precisely at x = τ4, where it also coin-

cides with ex(x). It follows that en(x) < e2(x) for all x > τ4 and n ≥ 3.
As a possible first step in extending the ECH capacities to higher dimen-

sion, Cristofaro-Gardiner established the following in collaboration with the
author, showing that when x ≤ τ4 symplectic rigidity persists in the stabi-
lized case.

3



Theorem 2.3 (Cristofaro-Gardiner–Hind, [4]). If x ≤ τ4 then en(x) =
e2(x).

While the holomorphic curves giving the 4-dimensional ECH obstruc-
tions remain useful in higher dimensions when x < τ4, the graph of en(x)
when x > τ4 remains mysterious. Kerman in collaboration with the author
has shown that the folding construction is sharp at least asymptotically.

Theorem 2.4 (Hind–Kerman, [11], [12]). For all n ≥ 3, limx→∞ en(x) = 3.

At the other end of the scale there is a sequence of points converging
to τ4 from above (called ‘ghost stairs’) at which the folded embedding from
Theorem 2.2 is again sharp. To describe these points let {hk}∞k=1 be the
even index Fibonacci numbers, that is, the sequence beginning 1, 3, 8, 21 . . . .
Then let xk =

h2k+3

h2k+1
for k ≥ 0.

Theorem 2.5 (Cristofaro-Gardiner–Hind–McDuff, [5]). en(xk) = 3xk
xk+1 for

all k ≥ 0, n ≥ 3.

These are labelled ghost stairs because they give a staircase of obstruc-
tions which originally appeared in the paper [17] of McDuff and Schlenk,
but in dimension 4 the obstructions are not sharp and so do not appear in
the graph of e2. In higher dimension we do not know if the xk are the tips
of a staircase in the graph of en, or alternatively if en(x) = 3x

x+1 for all n ≥ 3

and x ≥ τ4.

3 Embedding polydisks

For given ai ∈ (0,∞] we define a symplectic polydisk by

P (a1, . . . , an) = {π(x2i + y2i ) < ai for all i}.

In dimension 4 a solution to the embedding problem for polydisks into
a ball amounts to describing the function

p2(x) = inf{c > 0|P (1, x) ↪→ B4(c)}

for x ≥ 1. The techniques from [17] do not apply to this case, and indeed the
only embedding constructions available come from Schlenk’s book [21]. The
known theorems show that at least for small x folding cannot be improved.

Theorem 3.1 (Hind–Lisi, [13], Hutchings, [15], Christianson–Nelson, [2]).
If 1 ≤ x ≤ 2 then p2(x) = 1 + x.

If 2 ≤ x ≤
√
7−1√
7−2 then p2(x) = 2 + x

2 .
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To be precise, Hind–Lisi established the case x = 2, Hutchings dealt with
all x ≤ 12/5 and Christianson–Nelson completed the theorem as stated.

Although the 4-dimensional case remains incomplete, we can neverthe-
less write down the stabilized function

pn(x) = inf{c > 0|P (1, x)× R2(n−2) ↪→ B4(c)× R2(n−2)}.

Surprisingly, we can say a lot about p3(x).

Theorem 3.2. For x ≥ 2 we have p3(x) = 3.

We conclude with an outline of a proof of this assuming some familiarity
with pseudoholomorphic curves, and in particular finite energy curves, see
[6] and [1]. Detailed results about Lagrangian submanifolds will appear in
a joint paper with Opshtein, [14].

First note that it suffices to prove that p3(2) = 3. Indeed, Theorem 2.4
implies that limx→∞ pn(x) = 3 and the pn are clearly nondecreasing.

Arguing by contradiction, suppose that there exists a symplectic embed-
ding P (1, 2, S) ↪→ B4(c) × R2 for an S extremely large and c < 3. We will
identify P (1, 2, S) with its image under this embedding.

Now fix a large d, such that 3d−1 > dc but still with d << S and an ε > 0
such that dε is small. Then we define an open subset U = U(1, 2, S, ε) ⊂
P (1, 2, S) by

{1−ε < π(x21+y21) < 1, 2−(3d−1)ε < π(x22+y22) < 2,
S

2
< π(x23+y23) < S}.

We can think of U as a tubular neighborhood of a Lagrangian torus, say

L = {π(x21 + y21) = 1− ε

2
, π(x22 + y22) = 2− 3d− 1

2
ε, π(x23 + y23) =

3S

4
}.

In fact U admits a symplectic embedding into T ∗T 3 taking L to the zero-
section.

For δ2, δ3 < δ1 << ε very small, there is another symplectic embedding
E = E(ε− δ1, (3d− 1)(ε− δ2), (3d− 1)(ε− δ3)) ↪→ U which extends to the
closure of the ellipsoid. Composing the two we get

E ↪→ U ↪→ B4(c)× R2 ⊂ CP 2(c)× R2

where the last inclusion is a standard compactification of the ball factor, so
we are adding an L∞ = l∞ × R2 with l∞ the line at infinity in CP 2.

To study holomorphic curves we must fix an almost-complex structure on
(CP 2(c)×R2)\E with a cylindrical end on ∂E as in [1], section 3 (identifying
E with its image as usual). To control the projection of holomorphic curves
to the R2 factor we also assume that our almost-complex structures are
equal to a standard product structure on a fixed region {x23 + y23 > R}.
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We can then study finite energy curves asymptotic to Reeb orbits on ∂E.
For definitions and basic properties see [1], section 6. The Reeb orbits here
are closed loops in ∂E tangent to kerω|∂E , and for suitable δi these will be
exactly covers of the γi = ∂E ∩ {xj = yj = 0 for j 6= i}. Denote by γri the
r-fold cover.

The analysis in [11] and [4] implies that for a generic almost-complex
structure and sequence of d→∞ there exist finite energy planes asymptotic
to γ3d−11 and intersecting L∞ exactly d times, counting with multiplicity. We
may assume our d lies in this sequence, so the planes exist and have area
dc− (3d− 1)(ε− δ1). (For the area formula note that if we compactify our
planes by adding a (3d− 1) times cover of the (x1, y1) plane inside E, then
the curves will project to spheres of degree d in CP 2(c).)

Our goal is to take a limit of such finite energy planes as we perform
a neck stretching (as in [1] section 3.4) along a smoothing Σ of ∂U . Reeb
orbits on Σ appear in 2-dimensional families indexed by (k, l,m) ∈ Z3 \ {0}
describing the homology class when we project the orbit in T ∗T 3 to the
zero-section. That is, k gives the winding about {0} in the (x1, y1)-plane
and so on.

The compactness theorem in [1] describes the limit as a holomorphic
building, that is, a collection of finite energy holomorphic curves in comple-
tions of (CP 2(c)×R2)\U and U \E with matching asymptotic limits along
Σ. (We should really also include curves mapping to the symplectization
R × Σ in our discussion, however these do not affect the argument.) An
analysis as in [14] implies that the limit consists of finite energy planes in
(CP 2(c) × R2) \ U with negative ends asymptotic to Reeb orbits on Σ and
a single finite energy curve in U \ E with a number of positive ends on Σ
but a single negative end asymptotic to γ3d−11 on ∂E. A potential limiting
building with degree d = 2 is illustrated in Figure 1.

Identifying U with a subset of T ∗T 3 we see that the symplectic form is
exact and moreover has a primitive whose integral over a Reeb orbit of Σ in
the class (k, l,m) is given (in an arbitrarily large range, and up to a small
correction due to the smoothing) by

A(k, l,m) =
ε

2
|k|+ (3d− 1)ε

2
|l|+ S

4
|m|.

Now as d << S and our curves have area of order dc, we see that the limiting
component in U cannot have any positive ends asymptotic to Reeb orbits
with m 6= 0.

Given this we investigate the planes in (CP 2(c) × R2) \ U . If the plane
has intersection number g with L∞ and is asymptotic to a Reeb orbit in the
class (k, l, 0) then the deformation index given by

index = 6g − 2(k + l).
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Figure 1: A limiting building with d = 2.
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Again following [14] we can show that for a generic almost-complex structure
all limiting planes have index either 0 or 2 (the index is necessarily even).
The idea behind this is that genericity of our almost-complex structure can
be used to exclude curves of negative index. Thus the planes have nonnega-
tive index, but if their index exceeds the dimension of the asymptotic family
of Reeb orbits then other curves in the building will be forced to have nega-
tive index. Index 0 planes are rigid but for those of index 2 the asymptotic
limit will vary in the moduli space.

We also observe here the consequence that if our plane is asymptotic to
an orbit of class (k, 0, 0) with k < 0 then in fact we must have k = −1, the
index must be 2, and the intersection number g = 0.

The symplectic area of such a plane is given by the area of a disk with
boundary on L up to a correction of order ε,

area = cg − (k + 2l) +O(ε) = (c− 3)g + (3g − k − l)− l +O(ε).

Increasing c if necessary the area of our planes can be bounded above 0 by a
constant independent of ε. On the other hand the first term in this formula
is nonpositive, and by our index calculation the second term is either 0 or
1. Therefore we must have l ≤ 0. But the asymptotic limits of our finite
energy planes bound a cycle in U , and hence the sum of their homology
classes is 0. Hence, all planes are asymptotic to orbits in classes (k, 0, 0),
and by the matching conditions for curves in a holomorphic building all
positive asymptotic limits of our curve in U are also of this type.

Stokes’ theorem now gives the area of our curve in U as

ε

2

∑
|ki| − (3d− 1)(ε− δ1)

where the sum is over the covering degrees of the positive limits. Again
since these limits bound a cycle we have

∑
ki>0 |ki| =

∑
ki<0 |ki| and so

∑
ki<0

|ki| ≥ (3d− 1)(1− δ1
ε

).

We can take δ1 arbitrarily small, so
∑

ki<0 |ki| ≥ 3d− 1 and by the observa-
tion above our limiting building must contain 3d − 1 planes asymptotic to
orbits of class (−1, 0, 0) and each having area 1 + O(ε). The total area of
the limit is equal to the symplectic area of our initial planes. Therefore we
get

dc− (3d− 1)(ε− δ1) ≥ (3d− 1)(1 +O(ε)).

As dc < 3d− 1, when ε is sufficiently small this gives a contradiction.
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