
CUBULATIONS OF SYMPLECTIC 4-MANIFOLDS

R. HIND

Here is a construction of a simplicial decomposition of a symplectic 4-manifold
into simplices which are of a standard form up to symplectomorphism. It is clear
that much of the construction generalizes to higher dimensions.

A standard closed 4-simplex is a closed subset of C2 with coordinates z,w of the
form

∆ = {(z, w)|z ∈ S1, w ∈ S2}
where S1 and S2 are squares in the z and w planes. The simplex ∆ inherits a
symplectic form from the standard form i

2 (dz ∧ dz + dw ∧ dw) on C2. The areas of
S1 and S2 are complete symplectic invariants of the closure of ∆. Lines parallel to
the z and w coordinate planes give transverse symplectic foliations of ∆.

Definition. A symplectic cubular decomposition (SC) of a symplectic 4-manifold
M is a finite collection of embeddings of the closure of ∆ into M which cover M .
The embeddings should map leafs of the symplectic foliations of ∆ into symplectic
surfaces. Two different embeddings are either disjoint or intersect in the images of
the boundaries of ∆. The intersection will be a boundary simplex of one of the ∆
and along this simplex the images of the symplectic foliations should coincide.

A topological cubular decomposition (TC) is defined similarly except that the em-
beddings are not required to be symplectic. However we do require that two distinct
embeddings are either disjoint or the intersection is the image of a boundary simplex
of each ∆.

Any M admits a TC, for example coming from a Morse decomposition.

Remark. We observe that, at least if M is simply connected, then if M admits
a SC its tangent bundle TM splits as a direct sum TM = L1 ⊕ L2 of symplectic
subbundles. At each point the splitting is given by the images of the coordinate
directions in each simplex. This extends continuously across the boundaries of the
simplices. If there is no continuous choice of an assignment of L1 and L2 to the
components of the splitting, such an assignment does exist on a suitable double cover
of M .

Proposition 0.1. After blowing up a finite number of points, any symplectic 4-
manifold M admits a SC.

Example If M = S2×S2 with its standard split symplectic form, we can take a
TC of each factor. Here by a TC we mean a decomposition into images of squares
in C. The products of simplices in each factor give a SC of M .

Example Let M = CP 2]CP 2 or the nontrivial S2-bundle over S2. We can write
M = D1 × S2 ∪h D2 × S2 where D1 and D2 are disks and the two components are
glued using h(eiθ, z) = (eiθ, eiθz). Since h respects the symplectic structure on the
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S2 fibers M is naturally a symplectic fibration π over the two-sphere Σ = D1 ∪D2.
The symplectic structure on the fibers is given by the restriction of a global closed
2-form Ω and if σ is an area form on Σ then for K sufficiently large ω = Ω + Kπ∗σ
is a symplectic form on M . In this case we will see that M does not admit a TC
which is also a SC.

Following [1] let B+ and B− denote the homology classes of the two sections of
M corresponding to {0,∞} ⊂ S2, these have self-intersection ±1. Denoting their
Poincaré duals by B∨

±, it can be shown that M admits a symplectic form as above
cohomologous to µ+B∨

+ + µ−B∨
− if and only if µ+ > µ− > 0. Suppose that such

a TC and SC structure exists on M , then we will find two associated cycles in M
which can be represented by embedded symplectic surfaces. To do this, for each
simplex in our decomposition we normalize so that the squares have center {0} ∈ C
and look at the images of {0}×S2. We suppose that these images lie approximately
tangent to the subbundle L1 described above. They can be pieced together to form
a symplectic surface with self-intersection 0.

Suppose that the surface is homologous to S1 = a1B+ + b1B−. Since S1 has
positive symplectic area a1µ++b1µ− > 0 and the self-intersection number S1•S1 =
a2
1 − b2

1 = 0. Another result of McDuff says that for any tame almost-complex
structure on M , such as one making S1 holomorphic, the class of B− is represented
by a holomorphic curve. Therefore S1 • B− = −b1 ≥ 0. Hence −b1 = a1 > 0.
Similarly we find another symplectic surface homologous to S2 = a2B+ − a2B− by
looking at the other coordinates. But then S1 •S2 = a1a2− a1a2 = 0 which gives a
contradiction since the surfaces intersect transversally in each simplex with positive
intersection number. ¤

We now fix a compatible almost-complex structure J on (M,ω). After blowing
up a perturbation of J extends to give a compatible almost-complex structure on
the new symplectic manifold.

Lemma 0.1. After blowing up M at a finite number of points the tangent bundle of
the resulting symplectic manifold M̃ splits as a sum of complex line bundles. That
is, there exist line bundles L̃1 and L̃2 over M̃ such that (TM̃, J) = L̃1 ⊕ L̃2.

Proof Let T denote the tangent bundle of M and T̃ the tangent bundle of a
blow up M̃ of M at m points. Let E1,...,Em be the exceptional divisors. Let L be
a complex line bundle on M with c1(L) Poincaré dual to a divisor Σ (which may
be assumed to be disjoint from the points to be blown up). Then let L̃ be a line
bundle on M̃ with c1(L̃) Poincaré dual to Σ + k[E1].

Now, T̃ will split with L̃ being a factor if and only if T̃ ⊗ L̃∗ admits a never
vanishing section, that is, if c2(T̃ ⊗ L̃∗) = 0.

We compute
c2(T ⊗ L∗) = c1(L)2 − c1(L)c1(T ) + c2(T )

and
c2(T̃ ⊗ L̃∗) = c1(L̃)2 − c1(L̃)c1(T̃ ) + c2(T̃ ).

Now,
c1(L̃) = c1(L) + k[E1]∨,

c1(T̃ ) = c1(T )−
m∑

i=1

[Ei]∨
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and
c2(T̃ ) = c2(T ) + m.

Therefore
c2(T̃ ⊗ L̃∗) = c2(T ⊗ L∗)− k2 + k + m.

Hence T̃ splits provided we choose m and k such that k2−k−m = c2(T⊗L∗). ¤
Example Let M = CP 2 with its standard symplectic form ω. Then T = T (M)

does not split. Let L be the line bundle on CP 2 with c1(L) = [ω]. Then c2(T⊗L∗) =
1 − 3 + 3 = 1. Therefore, setting k = −1, m = 1, we see that if we blow up M at
a single point T (M̃) splits with one factor L̃ having first Chern class [ω] − [E1]∨.
Here M̃ is just the nontrivial S2 bundle over S2 and L̃ is the vertical line bundle.

Proof of Proposition 0.1
We suppose from now that (M,ω) has been blown up sufficiently that with

respect to a fixed compatible almost-complex structure J the complex vector bundle
TM over M admits a splitting TM = L1 ⊕ L2. Here L2 can be taken to be the
symplectic complement of L1 in TM . We will measure distances and angles in M
using the Riemannian metric g(X,Y ) = ω(X, JY ). We will construct an SC in
which the tangent spaces to all leafs of the symplectic foliations of each cube are
arbitrarily C∞ close to one of the subbundles L1 and L2.

There exists an ε > 0 such that at each point of p ∈ M there exists a Darboux
coordinate chart φp mapping the ball B(p, ε) to a neighborhood of 0 in (C2, ω0).
Furthermore φp(0)∗(J) = i and φp pushes forward the bundles L1 and L2 such
that at 0 they coincide with the standard complex coordinate planes. Using these
charts, on B(p, ε) we have natural projections onto L1(p) and L2(p).

We study the charts centered at a finite number of points such that the corre-
sponding balls cover M . In fact, given a ball centered at a point p we may assume
that all neighboring balls have centers lying in B(p, ε) and there exist C∞ small
(depending upon ε) symplectomorphisms mapping the foliations on B(p, ε) induced
from the coordinate planes in C2 to the corresponding foliations of the B(pi, ε),
where the pi are the centers of the neighboring balls.

We want to cover a neighborhood of each ball by a SC, ensuring compatibility
between neighboring simplices.

Starting with the first ball, an SC structure on C2 pulls back under our chart to
give a SC structure in a neighborhood of the ball.

We proceed to extend our SC over other balls by induction. Given a ball with
center q, we will construct a similar product type SC on B(q, ε) and restrict to a
neighborhood of the region which does not yet have a SC. We need to ensure that
such a SC can be adjusted to extend our existing SC.

Part of the ball B(q, ε) may already be covered by an existing SC. By construc-
tion, the cells may be assumed to be of product type relative to foliations C∞ close
to the coordinate foliations on B(q, ε). Therefore the 3-cells on the boundary of
this existing SC may be uniformly approximated by cells of the form S × I where
S and I are a (solid) square and an interval respectively in one of the Li(q) and
the product is defined with respect to the coordinate projections as before. Next
we assume that the 3-cells on this boundary all intersect transversally (that is, 3
dimensional submanifolds slightly extending the cells intersect transversally). This
can be easily arranged, at least in SCs constructed as we do below. Then if we
choose the S and I sufficiently large our new cells will still intersect transversally
and the relevant parts will form a new 3 dimensional subcomplex isomorphic to the
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original one, in the sense that there exists a C∞ small ambient compactly supported
isotopy of M mapping the boundary of the existing SC onto this new complex.

We replace the cells of our existing SC with their images under the ambient
isotopy. So now the boundary of our existing SC intersects B(q, ε) in cells which
are of product type with respect to the coordinate foliations of B(q, ε).

Using the canonical projections, we map the 1-skeleton of this boundary onto
both L1(q) and L2(q). Generically the images of 1-cells will be intervals intersecting
transversally which extend to give a decomposition of the planes into polygons.
Taking a barycentric subdivision we get a decomposition of the planes into triangles,
and dividing the triangles as in Figure 1 we will get TCs of the two planes. Taking
a product type SC with respect to these two TCs now gives an SC of the remainder
of B(q, ε) extending our existing SC as required.

¤
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