Economics 70312: Environmental Economics Problem Set 5 DUE: Friday, May 13

Professor Jensen

Spring 2011

Consider the model of invasive species in my working paper. Specifically, consider the problem of choosing expenditures on prevention $p \in [0, 1]$ to maximize the PDV of social welfare,

$$V(p;c,n,r,y) = \int_{0}^{\infty} e^{-rt} [h(p,n)e^{-h(p,n)t} [U(y-c)/r] + e^{-h(p,n)t} U(y-p)] dt$$

= $\frac{[h(p,n)/r] U(y-c) + U(y-p)}{r+h(p,n)},$ (1)

where $c = d(k^*) + k^*$ and k^* is the solution to the problem choose k to maximize $D(k; r, y) = \int_0^\infty e^{-rt} U(y - d(k) - k) dt = \frac{U(y - d(k) - k)}{r}.$

Assume that $U(y) = -e^{-\rho y}$, where $\rho > 0$ is a constant (its inverse is the well-known rate of constant relative risk-aversion).

1. Characterize the solution p^* when $h(p, n) = n - m(\frac{p}{1+p})$. Note that you can compute it as a function of c.

2. Characterize the solution p^* when $h(p,n) = n - (\frac{m}{2})p$.

3. Compare these outcomes. My reason for asking is that Leung et al assume the linear form of hazard function, which does give different results than a decreasing returns form (consider changes in m).