In or Out?

Faculty Research and Consulting

Richard Jensen
University of Notre Dame

Jerry Thursby
Emory University

Marie Thursby
Georgia Tech & NBER

Supported by the E.M. Kauffman Foundation & National Science Foundation
Motivation: An Empirical Anomaly

• 28% of a sample of 1767 US patents with faculty from 11 major US universities as inventors are solely assigned to for-profit firms
 – Employment contracts specify university IP ownership
 – Bayh-Dole Act allows university ownership of federally funded IP
 – US universities typically insist on ownership of firm sponsored research

• Consulting as an explanation?
 – Interviews with TTO, industry, and university personnel
 – Thursby et al. (2007) analysis of 5711 patents of faculty in 87 universities
 • 26% assigned solely to for profit firms
 • Firm assigned patents less basic than university assigned
 • Inventor share of license revenue increases likelihood of univ assignment
Motivation --continued

• Consulting a known but understudied phenomenon
 – Cohen et al. (1998) survey of R&D managers
 • 31% gave consulting as very important; 17% patents; 9% licenses
 – Mansfield (1995) shows two way flow
 – Beath et al. (2003) examines as a way to relax university budget constraints

• Understanding assignment requires understanding
 – Decisions of faculty on activity inside and outside the university
 – Decisions of government and industry on research funding

• Theoretical model plus empirical analysis of patent assignment
Theoretical Model

- Faculty can research own project in the university with gov and firm funding and receive c for time spent outside on the firm’s project
 - Patents from university project assigned to university
 - Patents from consulting assigned to firm
- Two stage game
 - Stage 1: Gov and firm choose G and F
 - Stage 2: Firm chooses c and Researcher chooses t
- Allow for
 - Projects of different difficulty (x_1, x_0)
 - Differing faculty quality (q)
 - Benefit to firm project from faculty’s university research (β)
 - Difference in effectiveness of G and F for university research ($1, \alpha$)
 - University and firm infrastructure (K_1, K_0)
Probability of success: \(p(\tau, e; q, x) \)

- \(\tau = \) time devoted to project, \(e = \) effective funding, \(q = \) researcher quality
 \(\tau, e, q \) inputs with +, diminishing marginal products, complements
- \(x = \) scientific merit (difficulty)
 negative marginal effect, cross-partial derivatives w.r.t. others are negative

University research project: \(e_1 = K_1 + G + aF \)

- \(K_1 = \) research support provided by university
- \(G = \) federal funding
- \(F = \) industrial (firm) funding
- \(a = \) fraction of industrial funding equivalent to university funding

Firm consulting project: \(e_0 = K_0 + \beta G + F + ct \)

- \(K_0 = \) research support provided by firm in its lab
- \(\beta = \) fraction of \(G \) that spills over to firm project
- \(c = \) unit consulting fee
- \(t = \) time spent consulting by researcher
Payoffs

University researcher:

\[EU(G,F,t,c) = p(T-t,e_I,q,x_I)U(R_s,S+\gamma L+ct) + [1-p(T-t,e_I,q,x_I)]U(R_p,S+ct) \]

\[R_i = \text{reputation (}i = \text{succeed, fail)}\), S = \text{salary, } L = \text{license income, } \gamma = \text{share of } L \]

Government:

\[EU_g(G,F,t,c) = p(T-t,e_I,q,x_I)U_g(R_{gs}) + [1-p(T-t,e_I,q,x_I)]U_g(R_{gf}) - V(G) \]

\[R_{gi} = \text{agency’s reputation } i=s,f \), V = \text{opportunity cost of funding} \]

Firm:

\[E\Pi(G,F,t,c) = p(T-t,e_I,q,x_I)(\pi_I -L) - F + p(t,e_O,q,x_O)\pi - ct \]

\[\pi_I = \text{profit from successful university invention} \]
\[\pi = \text{profit from successful consulting project} \]
Second Stage Comparative Statics
Testable Hypotheses

(i) ↑ spillover from university research, firm support in its lab, or difficulty of firm project → ↓ c*

(ii) ↑ quality → ↑ c*

(iii) ↑ attractiveness of firm funding, research funding from the university, license revenue, or license share → ↑ c* & ↓ t*

(iv) No spillover from university research, then ↑ G → ↓ t*
• Firm assigned patents result largely from consulting.
• Obviously, not a complete measure of consulting.

Due to data availability we consider 1993 science & engineering faculty 1990’s patents at

Purdue
MIT
Stanford
Wisconsin
Georgia Tech
Cornell
Pennsylvania
Texas A&M
Sample Characteristics

1767 Patent/Inventor Pairs

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firm</td>
<td>28.2%</td>
</tr>
<tr>
<td>University</td>
<td>67.2%</td>
</tr>
<tr>
<td>Unassigned</td>
<td>1.9%</td>
</tr>
<tr>
<td>US Gov't</td>
<td>0.9%</td>
</tr>
<tr>
<td>Not-For-Profit & Firm</td>
<td>1.6%</td>
</tr>
<tr>
<td>US Gov't & Not-For-Profit</td>
<td>0.2%</td>
</tr>
</tbody>
</table>
Econometric Model

Dependent Variable = 1 if assigned to university
 = 0 if assigned to firm

Independent Variables
 Total publications
 Total citations to these publications
 Federal research funds
 Industry research funds
 Other research funds
 Gender
 Age
 Fixed effects
 University
 Year
 Technology category
• What about faculty who do not patent?
• What about patent characteristics?
Means for Important Variables

Publications 7
Citations 271
Federal funding 796000
Industry funding 157000
Other funding 77000
<table>
<thead>
<tr>
<th></th>
<th>Odds Ratio</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Publications</td>
<td>1.062</td>
<td>0.000</td>
</tr>
<tr>
<td>Citations</td>
<td>1.000</td>
<td>0.041</td>
</tr>
<tr>
<td>Federal funding</td>
<td>0.906</td>
<td>0.007</td>
</tr>
<tr>
<td>Industry funding</td>
<td>2.312</td>
<td>0.046</td>
</tr>
<tr>
<td>Other funding</td>
<td>1.267</td>
<td>0.473</td>
</tr>
<tr>
<td>No. Observations</td>
<td>1280</td>
<td></td>
</tr>
<tr>
<td>Pseudo r-Square</td>
<td>0.223</td>
<td></td>
</tr>
</tbody>
</table>