Data Preprocessing Tasks

1. Data Cleaning

2. Data Transformation
 Next, let’s look at this task.

3. Data Reduction

4. Discretization
Data Transformation

- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scale data to fall within a small, specified range
- Feature construction: new features constructed from the given ones
Aggregation

• Sometimes “less is more.”
• Aggregation is the combining of two or more objects into a single object.
Normalization or Standardization

The goal of standardization or normalization is to make an entire set of values have a particular property.
Data Transformation: Normalization

- min-max normalization
- z-score normalization
- Normalization by decimal scaling
Min-Max Normalization

Transform the data from measured units to a new interval from $\text{new}_{\text{min}}_F$ to $\text{new}_{\text{max}}_F$ for feature F:

$$v' = \frac{v - \text{min}_F}{\text{max}_F - \text{min}_F} (\text{new}_{\text{max}}_F - \text{new}_{\text{min}}_F) + \text{new}_{\text{min}}_F$$

where v is the current value of feature F.
Min-Max Normalization: Example

Suppose that the minimum and maximum values for the feature income are $120,000 and $98,000, respectively. We would like to map income to the range $[0.0, 1.0]$. By min-max normalization, a value of $73,600$ for income is transformed to:

$$\frac{73,600 - 12,000}{98,000 - 12,000} (1.0 - 0.0) + 0 = 0.716$$
z-score (zero-mean) Normalization

Transform the data by converting the values to a common scale with an average of zero and a standard deviation of one. A value, \(v \), of \(A \) is normalized to \(v' \) by computing:

\[
v' = \frac{v - \bar{F}}{\sigma_F}
\]

where \(\bar{F} \) and \(\sigma_F \) are the mean and standard deviation of feature \(F \), respectively.
z-score (zero-mean) Normalization: Example

Suppose that the mean and standard deviation of the values for the feature income are $54,000 and $16,000, respectively. With z-score normalization, a value of $73,6000 for income is transformed to

$$\frac{73,600 - 54,000}{16,000} = 1.225$$
Decimal Scaling Normalization

Transform the data by moving the decimal points of values of feature F. The number of decimal points moved depends on the maximum absolute value of F. A value v of F is normalized to v' by computing:

$$v' = \frac{v}{10^j},$$

where j is the smallest integer such that $Max(|v'|) < 1.$
Decimal Scaling Normalization

Suppose that the recorded values of F range from -986 to 917. The maximum absolute value of F is 986. To normalize by decimal scaling, we therefore divide each value by $1,000$ (i.e., $j = 3$) so that -986 normalizes to -0.986 and 917 normalizes to 0.917.
Data Preprocessing Tasks

1. Data Cleaning
2. Data Transformation
3. Data Reduction
 Next, let’s look at this task.
4. Discretization
Data Reduction

• Do we need all the data?
• Data mining/analysis can take a very long time
• Computational complexity of algorithms
Data Reduction

• Sampling: selecting a subset of the data objects to be analyzed.
• Feature selection: selecting a subset of the features to be analyzed.
• Dimensionality reduction: creating new features that are a combination of the old features.
Data Sampling

- Sampling is commonly used approach for selecting a subset of the data to be analyzed.
- Typically used because it is too expensive or time consuming to process all the data.
- Key idea:

 Obtain a representative sample of the data.
Sampling With or Without Replacement

SRSWOR (simple random sample without replacement)

SRSWR
Systematic Sampling

Select instances from an ordered sampling window.

Equal-probability method: First, select an element from the list at random. Then, every \(k \)th element in the window is selected, where \(k \), the sampling interval, is:

\[
k = \frac{N}{n}
\]

Risk of interaction with unsuspected regularity in the data.
Simple Random Sampling

Shuffle the data and then select examples.

Avoids regularities. But what if the dataset is imbalanced?
Stratified Random Sampling

• Assume original known class distribution in data is Φ.
• Sample from the data such that Φ is maintained.
• New sample of data reflects original distribution.

Even works for imbalanced data. But often inefficient.
Cluster Sampling

- Group or segment the data based on similarities.
- Randomly select from each group.

Efficient, but won’t necessarily optimize performance.
Stratified or Cluster Sampling

Simple Random Sample

Stratified/Cluster Sample
Imbalanced Data

• Sometimes, classes have very unequal frequencies.
 – Attrition prediction: 97% stay, 3% attrite (in a month)
 – Medical diagnosis: 90% healthy, 10% diseased
 – eCommerce: 99% don’t buy, 1% buy
 – Security: > 99.99% of Americans are not terrorists

• Similar situation with multiple classes.
• Predictions can be 97% correct, but useless.
Handling Imbalanced Data

• With two classes: let positive targets be a minority.
• Separate raw held-aside set (e.g., 30% of data) and raw training.
• Select remaining positive targets (e.g., 70% of all targets) from raw training.
• Join with equal number of negative targets from raw training, and sort it.
• Separate randomized balanced set into balanced training and balanced testing.
Feature Selection

• Select a minimal set of features such that the probability distribution of the class is close to the one obtained by all the features.

• A good feature vector is defined by its capacity to discriminate between examples from different classes.
 • Maximize the inter-class separation and minimize the intra-class separation.
Feature Selection Properties

- Linear separability
- Non-linear separability
- Highly correlated features
- Multi-modal
Feature Properties

- Linear Separability
- Non-Linear Separability
- Multi-Model
- Highly Correlated Features
Feature Selection

• Given a feature set \(X = \{x_i| i = 1 \ldots N\} \), find a subset \(XM = \{x_{i1}, x_{i2}, \ldots, x_{iM}\} \), with \(M < N \), that optimizes an objective function \(\Phi(X) \), ideally error minimization.

• But remember, finding optimal number of features is an approximation.
Feature Selection: The Key Idea

“There is no problem-independent or privileged or ‘best’ set of features or feature attributes.”

—Ugly Duckling Theorem
Feature Selection Properties

- Problem with four features, where 0 shows feature exclusion and 1 feature inclusion.
- Potentially, any node in the lattice may be reached from any start point, by repeated actions.
- The lattice for an n dimensional feature set can have 2^n nodes.
Curse of Dimensionality: Key Idea

“A function defined in high dimensional space is likely to be much more complex than a function defined in a lower-dimensional space, and those complications are harder to discern.”

—Milton Friedman (Famous Dude)
Feature Selection Schemes

• Filters
 – Use a feature selection technique or heuristic to rank-order relevant features based on certain value v.
 – Select features with v exceeding certain threshold.

• Wrapper
 – Stepwise forward selection.
 – Stepwise backward elimination.
 – Combine forward selection and backward elimination.
Filters

• Examples: information gain, correlation measures, RELIEF-F, odds ratio, PCA
Filters

• Advantages
 – Typically faster execution
 – Non iterative process
 – Generality
 – Without an inductive bias of an underlying classifier as in the wrapper

• Disadvantage
 – Require an arbitrary cut-off strategy
 – Does not capture inter-feature interactions
Wrappers

• Examples: sequential stepwise search techniques, bidirectional search.
Wrappers

• Advantages
 – Tuned for the underlying inductive bias

• Disadvantage
 – Slow execution: reduce (almost) exhaustive search
 – Lack of generality
 • Tuned for a particular classifier
Wrappers
Let’s see some data transformation!