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Diversity Polynomials for the Analysis of
Temporal Correlations in Wireless Networks
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Abstract—The interference in wireless networks is temporally
correlated, since the node or user locations are correlated over
time and the interfering transmitters are a subset of these
nodes. For a wireless network where (potential) interferers form
a Poisson point process and use ALOHA for channel access,
we calculate the joint success and outage probabilities of n
transmissions over a reference link. The results are based on the
diversity polynomial, which captures the temporal interference
correlation. The joint outage probability is used to determine
the diversity gain (as the SIR goes to infinity), and it turns
out that there is no diversity gain in simple retransmission
schemes, even with independent Rayleigh fading over all links.
We also determine the complete joint SIR distribution for two
transmissions and the distribution of the local delay, which is
the time until a repeated transmission over the reference link
succeeds.

Index Terms—Wireless networks, interference, correlation,
outage, Poisson point process, stochastic geometry.

I. INTRODUCTION

A. Motivation and contributions

THE locations of interfering transmitters in a wireless
network are static or subject to a finite level of mobility.

As a result, the interference power is temporally correlated,
even if the transmitters are chosen independently at random
from the total set of nodes in each slot. The interference
correlation has been largely ignored until recently, although
it can have a drastic effect on the network performance. In
this paper, we provide a comprehensive analysis of the joint
success and outage probabilities of multiple transmissions over
a reference link in a Poisson network, where the potential
interferers form a static Poisson point process (PPP) and the
actual (active) interferers in each time slot are chosen by an
ALOHA multiple-access control (MAC) scheme. The results
show that for some network parameters, ignoring interference
correlation leads to significant errors in the throughput and
delay performance of the link under consideration.

The Poisson network model has served as an important
base-line model for ad hoc and sensor networks for several
decades and later also for mesh and cognitive networks.
More recently, it has also been gaining relevance for cellu-
lar systems, where base stations are increasingly irregularly
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deployed, in particular in heterogeneous networks [1]. Con-
sequently, the results in this paper may find applications in a
variety of networks.

The paper makes four contributions:
• We introduce the diversity polynomial and provide a

closed-form expression for the joint success probability
of n transmissions in a Poisson field of interferers with
independent Rayleigh fading and ALOHA channel access
(Section III).

• We show that there is no temporal diversity gain
(due to retransmission), irrespective of the number of
retransmissions—in stark contrast to the case of inde-
pendent interference (Section III.D).

• We provide the complete joint SIR distribution for the
case of two transmissions and show that the probability
of succeeding at least once is minimized if the two
transmissions occur at the same rate (Section IV).

• We determine the complete distribution of the local delay,
which is the time it takes for a node to transmit a packet
to a neighboring node if a failed transmission is repeated
until it succeeds (Section V).

B. Related work

The first paper explicitly addressing the interference corre-
lation in wireless networks is [2], where the spatio-temporal
correlation coefficient of the interference in a Poisson network
is calculated. It is also shown that transmission success events
and outage events are positively correlated, but their joint
probability is not explicitly calculated. In [3], the temporal
interference correlation coefficient is determined for more gen-
eral network models, including the cases of static and random
node locations that are known or unknown, channels without
fading and fading with long coherence times, and different
traffic models. In [4], the loss in diversity is established for
a multi-antenna receiver in a Poisson field of interference.
The probability that the SIR at n antennas jointly exceeds
a threshold θ is determined in closed form. This result is a
special case of the main result in this paper, where the focus is
on temporal correlation. More recently, [5] studied the benefits
of cooperative relaying in correlated interference, for both
selection combining and maximum ratio combining (MRC),
while [6] analyzed on the impact correlated interference has
on the performance of MRC at multi-antenna receivers.

A separate line of work focuses on the local delay, which
is the time it takes for a node to connect to a nearby neighbor.
The local delay, introduced in [7] and further investigated in
[8], [9], is a sensitive indicator of correlations in the network.
In [10] the two lines of work are combined and approximate
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joint temporal statistics of the interference are used to de-
rive throughput and local delay results in the high-reliability
regime. In [11], the mean local delay for ALOHA and
frequency-hopping multiple access (FHMA) are compared,
and it is shown that FHMA has comparable performance in the
mean delay but is significantly more efficient than ALOHA in
terms of the delay variance.

II. SYSTEM MODEL

We consider a link in a Poisson field of interferers, where
the (potential) interferers form a uniform Poisson point process
(PPP) Φ ⊂ R

2 of intensity λ. The receiver under consideration
is located at the origin o, and it attempts to receive messages
from a desired transmitter at location z, where ‖z‖ = r, which
is not part of the PPP. Time is slotted, and the transmission
over the link from z to o is subject to interference from the
nodes in Φ, which use ALOHA with transmit probability p.
The desired transmitter is transmitting in each time slot. The
transmit power level at all nodes is fixed to 1, and the channels
between all node pairs are subject to power-law path loss with
exponent α and independent (across time and space) Rayleigh
fading.

The signal-to-interference ratio (SIR) at o in time slot k is
then given by

SIRk =
hkr

−α∑
x∈Φk

hx,k‖x‖−α
,

where Φk ⊆ Φ is the set of active interferers in time slot k and
(hk, hk,x)k∈Z,x∈Φ is a family of independent and identically
distributed (iid) exponential random variables with mean 1.
In each time slot k, Φk forms a PPP of intensity λp, but the
point processes Φk and Φi are dependent for all k, i ∈ Z,
since they are subsets of the same PPP Φ. In the extreme case
where p = 1, Φk ≡ Φ, ∀k ∈ Z. This dependence is what
makes the following analysis non-trivial.

III. THE DIVERSITY POLYNOMIAL AND THE JOINT

SUCCESS PROBABILITY

A. Main result

We use a standard SIR threshold model for transmission
success and denote by Sk � {SIRk > θ} the transmission
success event in time slot k. We first focus on the probabilities
of the joint success events

p(n)s � P(S1 ∩ . . . ∩ Sn).

To calculate this probability, we introduce the diversity
polynomial.

Definition 1 (Diversity polynomial). The diversity polyno-
mial Dn(p, δ) is the multivariable polynomial (in p and δ)
given by

Dn(p, δ) �
n∑

k=1

(
n

k

)(
δ − 1

k − 1

)
pk. (1)

It is of degree n in p and degree n− 1 in δ.

The second binomial can be expressed as(
δ − 1

k − 1

)
� (δ − 1) · . . . · (δ − k + 1)

(k − 1)!
=

Γ(δ)

Γ(k)Γ(δ − k + 1)
.

(2)
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Fig. 1. The diversity polynomial D5(p, δ).

The first four diversity polynomials are

D1(p, δ) = p

D2(p, δ) = 2p+ (δ − 1)p2

D3(p, δ) = 3p+ 3(δ − 1)p2 +
1

2
(δ − 1)(δ − 2)p3

D4(p, δ) = 4p+ 6(δ − 1)p2 + 2(δ − 1)(δ − 2)p3+

1

6
(δ − 1)(δ − 2)(δ − 3)p4.

Properties:

• For fixed n and δ, Dn(p, δ) is concave increasing from
0 to Dn(1, δ), for p ∈ [0, 1].

• For fixed n and p, Dn(p, δ) is convex increasing from
1− (1− p)n to np, for δ ∈ [0, 1].

Theorem 1 (Joint success probability). The probability that
in a Poisson field of interferers a transmission over distance
r succeeds n times in a row is given by

p(n)s = e−ΔDn(p,δ),

where Δ = λπr2θδΓ(1 + δ)Γ(1− δ) and δ = 2/α.

Proof. See Appendix A.
Remarks:

• The parameter Δ is related to the spatial contention pa-
rameter γ introduced in [12], [13]. For Poisson networks,
γ = πθδΓ(1 + δ)Γ(1− δ), hence Δ = λr2γ.

• When evaluating p
(n)
s as a function of δ, it must be

considered that Δ is itself a function of δ, not just
Dn(p, δ).

• For n = 1, the result reduces to the well-known single-
transmission result P(Sk) = e−Δp, for all k.

• If δ ↑ 1 (α ↓ 2), Dn(p, δ) ↑ np, which means the success
events become independent. At the same time, Δ ↑ ∞,
so p

(n)
s ↓ 0.

• If δ ↓ 0 (α ↑ ∞), Dn(p, δ) ↓ 1 − (1 − p)n, which is
the case of maximum correlation. At the same time, Δ ↓
λπr2, which is the smallest possible value.
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Fig. 2. The conditional success probability (3) for δ = 1/2 and Δ = 1/2.
The dashed line is the success probability of a single transmission e−p/2.

• If δ ↓ 0 and p = 1, Dn(1, δ) ↓ 1 for all n, so
the success events are fully correlated (despite the iid
Rayleigh fading), i.e.,

p(1)s = p(2)s = . . . = e−Δ = e−λπr2 ,

and P(S2 | S1) = 1. This is a strict hard-core condition,
i.e., all transmissions succeed if there is no interferer
within distance r.

• If p = 1, the diversity polynomial simplifies to the one
introduced in [4] for the SIMO case, where it quantifies
the spatial diversity instead of the temporal diversity:

Dn(1, δ) =
Γ(n+ δ)

Γ(n)Γ(1 + δ)

As these remarks show, the diversity polynomial characterizes
the dependence between the success events and the diversity
achievable with multiple transmissions.

An immediate important consequence of Thm. 1 is the
following result for the conditional success probability of
succeeding at time n+ 1 after having succeeded n times:

P(Sn+1 | S1, . . . , Sn) = eΔ(Dn(p,δ)−Dn+1(p,δ)). (3)

Fig. 2 displays the conditional success probability for n =
1, 2, 3, 4. It can be seen that succeeding once or twice dras-
tically increases the success probability if p is not too small.
This illustrates that treating interference as independent may
result in significant errors.

B. Alternative forms of the diversity polynomial

Let

fn(x) �
n∏

k=1

(x
k
− 1
)
=

1

n!

n∏
k=1

(x− k)

be the polynomial of order n with roots at [n] = {1, 2, . . . , n}
and fn(0) = (−1)n. Thus equipped, we can write the diversity
polynomial as

Dn(p, δ) =

n∑
k=1

(
n

k

)
fk−1(δ)p

k,

by observing that

fk−1(δ) =
Γ(δ)

Γ(k)Γ(δ − k + 1)
.

Using the Stirling numbers of the first kind Sn,k, the falling
factorial1 (x)n � x(x − 1) · · · (x− n+ 1) can be written as

(x)n =

n∑
k=0

Sn,kx
k.

Rewriting the binomial as(
δ − 1

k − 1

)
=

(δ − 1)k−1

Γ(k)
=

1

Γ(k)

k−1∑
j=0

Sk−1,j(δ − 1)j ,

we have

Dn(p, δ) =

n∑
k=1

(
n

k

)
pk

Γ(k)

k−1∑
j=0

Sk−1,j(δ − 1)j

=

n∑
k=1

(
n

k

)
pk

Γ(k)

k−1∑
j=0

(−1)jSk−1,j(1− δ)j . (4)

This expansion in (1− δ) is useful since α ∈ (2, 4] in most
situations. For n = 2, 3, 4, the polynomial in this form is

D2(p, δ) = 2p− p2(1− δ)

D3(p, δ) = 3p+ (−3p2 + 1
2p

3)(1− δ) + 1
2p

3(1− δ)2

D4(p, δ) = 4p+ (−6p2 + 2p3 − 1
3p

4)(1− δ)+

(2p3 − 1
2p

4)(1− δ)2 − 1
6p

4(1 − δ)3.

For δ ↑ 1, since Sk−1,1 = (−1)kΓ(k − 1), k ≥ 2, we have
from (4)

Dn(p, δ) = np+ (1− δ)

n∑
k=2

(
n

k

)
(−1)k+1pk

k − 1
+O((1− δ)2).

This expression is useful as an approximation for general p
if α ≤ 3 (or 1− δ ≤ 1/3).

Alternatively, Dn(p, δ) can be expressed as a polynomial in
δ as

Dn(p, δ) =

n∑
k=1

(
n

k

)
pk

Γ(k)

k∑
j=1

Sk,jδ
j−1.

In this last expression, the term for j = 1 is 1 − (1 − p)n.
This is the polynomial in p obtained when δ = 0. Conversely,
when δ = 1, it is np.

C. Event correlation coefficients

Let Ak = 1(Sk) be the indicator that Sk occurs. The
correlation coefficient between Ai and Aj , i �= j, is

ζAi,Aj (p, δ) =
P(S1 ∩ S2)− P

2(S1)

P(S1)(1− P(S1))

=
eΔp2(1−δ) − 1

eΔp − 1
. (5)

The correlation coefficient for Δ = 5δΓ(1 + δ)Γ(1 − δ)/2 is
illustrated in Fig. 3 as a function of p and δ. It reaches its

1(x)n is the Pochhammer notation for the falling factorial.
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Fig. 3. The correlation coefficient ζ(p, δ) given in (5) for λπr2 = 1/2 and
θ = 5 as given by (5). The correlation coefficient is decreasing with δ. For
δ � 1, it increases in p, but for δ ≈ 1, it is not monotonic in p.

maximum of 1 at p = 1 and δ = 0. While it is decreasing in
δ, it is not monotonic in p at δ ≈ 1.

Since P(S1) = P(S2), we have P(S̄1 ∩ S̄2) − P
2(S̄1) ≡

P(S1 ∩ S2)− P
2(S1), thus the failure events are correlated in

exactly the same way as the success events: If Āk = 1(S̄k),
then ζĀi,Āj

(p, δ) ≡ ζAi,Aj (p, δ).

D. Joint and conditional outage probabilities

The dependence between two success events can be quan-
tified by the ratio of the probabilities of the joint event to the
probability of the same events if they were independent. We
obtain

P(S1 ∩ S2)

P2(S1)
=

e−ΔD2(p,δ)

e−2Δp
= eΔ(1−δ)p2

> 1,

which is consistent with the fact that the correlation coefficient
(5) is positive. The positive correlation is also apparent from
the conditional probability that the second attempt succeeds
when the first one did, which is

P(S2 | S1) =
e−ΔD2(p,δ)

e−Δp
= e−Δp(1−p(1−δ)).

The probability of (at least) one successful transmission in
n attempts follows from the inclusion-exclusion formula

p1|ns � P

(
n⋃

k=1

Sk

)
=

n∑
k=1

(−1)k+1

(
n

k

)
p(k)s . (6)

For the joint outage it follows that

P(S̄1 ∩ S̄2) = 1− p1|2s = 1− 2e−Δp + e−Δp(2−p(1−δ)).

Hence

P(S̄1 | S̄2) = 1− e−Δp(1− e−Δp(1−p(1−δ)))

1− e−Δp
(7)

and

P(S̄1 ∩ S̄2)

P2(S̄1)
= 1 +

e−2Δp(eΔp2(1−δ) − 1)

(1− e−Δp)2
> 1,

which is consistent with the previous observation that failure
events are also positively correlated.

From (7), the success probability given a failure follows as

P(S2 | S̄1) =
1− e−Δp(1−p(1−δ))

eΔp − 1
,

which is maximized at Δ = 0, where it is 1 − p(1 − δ).2

This follows since the numerator is at most Δp(1− p(1− δ))
whereas the denominator is at least Δp, both with equality at
Δ = 0. This yields the general bound

P(S2 | S̄1) ≤ 1− p(1− δ),

with equality if and only if Δ = 0. Since Δ = λπr2θδΓ(1 +
δ)Γ(1− δ), Δ → 0 is achieved by either letting the interferer
density λ, the transmission distance r, or the SIR threshold θ
go to 0.

Next we examine the conditional outage probability of an
outage in slot n + 1 given that outages occurred in slots 1

through n. Since p
(n)
s → 1 as Δ → 0, one would expect

this conditional outage probability to go to zero in the limit.
Interestingly, this is not the case.

Corollary 1 (Asymptotic conditional outage).

lim
Δ→0

P(S̄n+1 | S̄1 ∩ . . . ∩ S̄n) = p(1− δ/n), n ≥ 1. (8)

Proof: From (11) we know that the expansions of p(n+1)
o

and p
(n)
o both have non-zero linear terms in Δ, thus the higher-

order terms do not matter, and the limit follows as

lim
Δ→0

p
(n+1)
o

p
(n)
o

=
p

n

Γ(n+ 1− δ)

Γ(n− δ)
=

p

n
(n− δ).

This is in stark contrast to the independent case, where this
limit is obviously 0. The actual asymptotic conditional outage
probability is increasing in n and reaches p as n → ∞.

Conversely, we have for the conditional success probability
given n failures

lim
Δ→0

P(Sn+1 | S̄1 ∩ . . . ∩ S̄n) = 1− p(1− δ/n).

Fig. 4 illustrates the conditional outage probability after n
failures for δ = 1/2 and Δ = 1/2.

E. Diversity gain of retransmission scheme

Definition 2 (Diversity gain of retransmission scheme). The
diversity gain, or simply diversity, is defined as

d � − lim
SIR→∞

log p
(n)
o (SIR)

log SIR
,

where SIR is the mean SIR (averaged over all randomness).

This is analogous to the standard definition in noise-limited
systems, where diversity is defined as the exponent of the error
probability as the (mean) SNR increases to infinity, see, e.g.,
[14]. In our interference-limited system, the relevant quantity
is the SIR.

2Here and elsewhere in the paper, we assume that when a function f has
a removable singularity at a, its value at a is understood as the limit f(a) =
limx↓a f(x).
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Fig. 4. The conditional outage probability of an outage in the (n + 1)th
transmission given that the previous n failed for δ = 1/2 and Δ = 1/2. The
dashed line is the outage probability of a single transmission 1− e−p/2.

To calculate the diversity, we need to first establish the
connection between the mean SIR and the parameter Δ. The
SIR can be increased by either increasing the received signal
power or by decreasing the interference. Either way, we find
that SIR ∝ Δ−1/δ:

• If we increase the received power by increasing the
transmit power Pt at the desired transmitter, we have
SIR ∝ Pt. Since increasing Pt and decreasing θ have
the same effect on the success probability P(SIR > θ),
we have Δ ∝ P−δ

t ∝ SIR−δ and thus SIR ∝ Δ−1/δ .
• If we increase the received power by reducing the link

distance r, we have SIR ∝ r−α. Since Δ ∝ r2, we obtain
SIR ∝ Δ−1/δ.

• If we reduce the interference by decreasing the intensity
λ of the PPP, we have I ∝ λ1/δ since the interference I
is a stable random variable with characteristic exponent
δ [15, Cor. 5.4]. Since Δ ∝ λ and SIR ∝ I−1, we again
have SIR ∝ Δ−1/δ.

In conclusion, letting SIR → ∞ is the same as letting
Δ−1/δ → ∞, and we can express the diversity as

d = − lim
Δ−1/δ→∞

log p
(n)
o (Δ)

log(Δ−1/δ)
= lim

Δ→0
δ
log p

(n)
o (Δ)

logΔ
. (9)

Next we need a lemma that establishes expansions on the
probability of succeeding at least once in n transmissions.

Lemma 1 (Taylor expansions). We have

p1|ns = 1−Δpn
Γ(n− δ)

Γ(n)Γ(1− δ)
+O(pn+1), p → 0, (10)

and

p1|ns = 1−Δpn
Γ(n− δ)

Γ(n)Γ(1 − δ)
+O(Δ2), Δ → 0. (11)

Proof: See Appendix B.

Corollary 2 (Diversity gain). We have d = δ for all n ∈ N.

Proof: From (11) we have p(n)o = 1−p
1|n
s = ΔC+O(Δ2)

for some C > 0 that does not depend on Δ. It follows that

d = lim
Δ→0

δ
log(Δ(C +O(Δ)))

logΔ
= δ.

In contrast, with independent interference, the diversity gain
would be

lim
Δ→0

δ
log((1− e−Δp)n)

logΔ
= nδ.

So, retransmissions in (static) Poisson networks provide no
diversity gain.

Conversely, fixing Δ > 0 and varying p, we have from (10)
and the fact that SIR ∝ p−1/δ

lim
p→0

δ
log p

(n)
o (p)

log p
= δn,

so if the SIR is increased by decreasing p, full diversity is
restored. The difference in the behavior lies in the fact that Δ
captures the static components of the network, while reducing
p reduces the dependence between the interference power in
different time slots.

Alternatively, the diversity could be defined on the basis
of Δ−1 → ∞ instead of SIR → ∞, which would yield
diversity n in the independent case (and diversity 1 in reality).
This value may be better aligned with the intuition of what
the diversity gain should be with n independent transmission
attempts.

F. Effect of bounded path gain

Here we derive the conditional success probability for the
case where the (mean) path gain is bounded, i.e., instead of
assuming a gain of v−α for a link of distance v, we employ
a path gain of min{1, v−α}. Equivalently, the path loss is
	(v) = max{1, vα}.

Corollary 3 (Joint success probability for bounded path
gain). For the same setting as in Thm. 1 but with path loss
law 	(v) = max{1, vα}, the joint success probability of n
transmissions over distance r is

p
(n)
s,bd = exp

(
−λπ

n∑
k=1

(−1)k+1pkBk

)
, (12)

where

Bk =

(
θ′

1 + θ′

)k

+θ′δδ
Γ(k − δ)Γ(δ)

Γ(k)
−H([k, δ], 1+δ,−1/θ′),

H is the Gauss hypergeometric function3, and θ′ = θ	(r) =
θmax{1, rα}.
Compared with the unbounded case in Thm. 1, we have
p
(n)
s,bd > p

(n)
s if r ≥ 1.

Proof. See Appendix C.
The middle term in the expression for Bk is the one for
the unbounded path gain, whereas the other two account
for the difference between the unbounded and bounded case.
Since H([a, b], c, 0) = 1, the bounded and unbounded cases
coincide as θ′ → ∞, i.e., for large SIR thresholds or distances
r of the desired link. Even for θ = 1 and r = 1, the
difference is insignificant, as Fig. 5 illustrates. The figure
replicates Fig. 2 for bounded path gain and shows the same
behavior: Succeeding once or twice significantly increases the

3Sometimes denoted as 2F1
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Fig. 5. The conditional success probability (12) for δ = 1/2, r = 1, θ = 1,
and λ = π−2 for the path loss law �(u) = max{1, uα}. The parameters are
chosen so that they result in Δ = 1/2, so that the only difference to Fig. 2
is the bounded path gain.

success probability for p not too small. This suggests that the
conclusions and trends observed in the unbounded case also
hold in the bounded case.

IV. THE TWO-TRANSMISSION CASE WITH DIFFERENT

SIR THRESHOLDS

Here we explore the case of n = 2 but with different
thresholds, i.e., we focus on the events S1 = {SIR1 > θ1} and
S2 = {SIR2 > θ2}. This case is of interest for two reasons:
First it leads directly to the complete joint SIR distribution,
second it is useful to provide guidance on how the rate of
transmission affects the probabilities of succeeding twice or
succeeding after a failure.

A. Main result

Theorem 2 (Joint success probability with different thresh-
olds). We have

P(S1 ∩ S2) = e−Δ̂D̂(p,δ,θ1,θ2),

where Δ̂ = Δ/θδ = λπr2Γ(1 + δ)Γ(1− δ) and

D̂(p, δ, θ1, θ2) = p(θδ1 + θδ2) + p2
θδ1θ2 − θδ2θ1
θ1 − θ2

. (13)

Alternatively, letting θ̄ =
√
θ1θ2 and ν = log

√
θ2/θ1, we

have

D̂(p, δ, θ̄e−ν , θ̄eν) = pθ̄δ
(
2 cosh(νδ) − p

sinh(ν(1− δ))

sinh ν

)
.

(14)
Moreover, D̂(p, δ, θ̄e−ν , θ̄eν) achieves its minimum of

pθ̄δ(2− p(1− δ)) at ν = 0, i.e., the joint success probability
is maximized at ν = 0.

Proof. See Appendix D.
Since the joint success probability is symmetric in θ1 and

θ2, the expression (14) is even in ν, and it can be tightly
bounded by its quadratic Taylor expansion

D̂(p, δ, θ̄e−ν, θ̄eν) �
pθ̄δ
(
2− p(1− δ) + δ

[
δ +

p

6
(δ − 1)(δ − 2)

]
ν2
)
. (15)

With independent interference, we would have D̂ = p(θδ1+θδ2).
As expected,

D̂(p, δ, θ̄e−ν , θ̄eν) < p(θδ1 + θδ2) = 2pθ̄δ cosh(νδ),

which shows that transmission success events are positively
correlated for all thresholds θ1, θ2.

The joint SIR distribution P2(θ1, θ2) = 1 − P(S1 ∪ S2)
follows from Thm. 2 as

P2(θ1, θ2) � P(SIR1 ≤ θ1, SIR2 ≤ θ2)

= 1− e−Δ̂θδ
1p − e−Δ̂θδ

2p + e−Δ̂D̂(p,δ,θ1,θ2). (16)

Expressed differently,

P2(θ̄e
−ν , θ̄eν) =

1− 2 exp(−Δ̂pθ̄δ cosh(νδ)) cosh(Δ̂pθ̄δ sinh(νδ))+

exp

(
−Δ̂pθ̄δ

[
2 cosh(νδ) − p

sinh(ν(1 − δ))

sinh ν

])
. (17)

The next result shows that ν = 0 is an extremal point of
the joint outage probability.

Corollary 4 (Asymmetric probability of success). For all
p ∈ (0, 1], δ ∈ (0, 1), Δ̂ > 0, θ̄ > 0, the probability p

1|2
s (ν) of

succeeding at least once in two transmissions with thresholds
θ̄e−ν and θ̄eν , respectively, is minimized at ν = 0, i.e., in the
symmetric case.

Proof: See Appendix E.
Hence the probability of succeeding at least once in two

transmissions can be increased by using asymmetric thresholds
θ1 �= θ2, corresponding to ν �= 0. Conversely, the joint outage
probability P2(θ̄e

−ν , θ̄eν) is maximized at ν = 0.
Since p

1|2
s (ν) is an even function of ν, it can be expressed

as

p1|2s (ν) = 1− P2(θ̄e
−ν, θ̄eν) = A+Bν2 +O(ν4),

where A = p
1|2
s (0) and B is the second derivative at ν = 0.

A and B are given by

A = 2P(SIR1 > θ̄)− P(SIR1 > θ̄, SIR2 > θ̄)

= 2 e−Δ̂ pθ̄δ − e−Δ̂ pθ̄δ(2−p(1−δ)) (18)

B = Δ̂ pθ̄δδ2(Δ̂ pθ̄δ − 1)e−Δ̂pθ̄δ

+

1
6Δ̂pθ̄δδ

(
6δ + 2p− 3pδ + pδ2

)
e−Δ̂ pθ̄δ(2−p(1−δ)).

(19)

Since ν = 0 is the global minimum, we know that B > 0.
In Fig. 6, exact curves for p

1|2
s (ν) and the quadratic ap-

proximations A + Bν2 are shown for p = 1/2 and p = 1/4.
It can be observed that the approximation is quite accurate
(slightly optimistic, in fact) for |ν| ≤ 1, which corresponds to
θ1/θ2 ∈ [e−2, e2].

B. Comparison with two independent transmissions

Here we investigate three cases where actual success prob-
abilities are compared with the probabilities obtained if the
two success events were independent.
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Fig. 6. Probability of succeeding at least once in two transmissions with
general θ1 and θ2. The solid curves are the exact values of p

1|2
s (ν) =

1 − P2(θ̄e−ν , θ̄eν), where P2 is given in (17). The dashed curves are the
approximations A+Bν2, with A and B given in (18) and (19), respectively.
The transmit probabilities and p = 1/2 and p = 1/4, and the other
parameters are δ = 2/3, Δ̂θ̄δ = 2.

1) Joint success probability: Since transmission success
events are positively correlated, we expect that the link can
accommodate a certain level of asymmetry in the thresholds
for the two transmissions. To explore this, we find the value
of ν such that

P(SIR1 > θ̄e−ν , SIR2 > θ̄eν) = P
2(SIR1 > θ̄)

or, writing out the probabilities,

exp
(
−Δ̂D̂(p, δ, θ̄e−ν, θ̄eν)

)
= e−2Δ̂θ̄δp.

To find an approximate value ν̂ of ν for which this holds we
use (15). Taking logarithms and dividing by Δ̂θ̄δp yields

2− p(1− δ) + δ
[
δ +

p

6
(δ − 1)(δ − 2)

]
ν̂2 = 2,

and we obtain

ν̂2 =
p(1− δ)

δ
[
δ + p

6 (δ − 1)(δ − 2)
] . (20)

This is the level of SIR asymmetry that can be afforded
thanks to the positive correlation. The resulting joint success
probability will be slightly higher than P

2(SIR1 > θ̄), since
(15) is a (tight) bound.

Assuming a transmission rate of log(1 + θ) nats/s/Hz for
an SIR threshold of θ, which can be achieved if Gaussian
signaling is employed, the positive correlation translates to a
rate gain or throughput gain since

log(1 + θ̄e−ν) + log(1 + θ̄eν) = log(1 + 2θ̄ cosh ν + θ̄2)

is increasing in |ν|. Compared to the symmetric case, the
throughput gain is

log

(
1 +

2θ̄(cosh ν − 1)

(1 + θ̄)2

)
� log

(
1 +

θ̄ν2

(1 + θ̄)2

)
.

Fig. 7. Success probabilities after two transmissions for θ̄ = 10. Solid line:
1− P2(θ̄e−ν , θ̄eν). Dashed line: 1− (1 − P(SIR1 > θ̄e−ν))2 . The dash-
dotted line shows the minimum of the solid curve, which is p1|2s (0) = 0.908.
Its intersection with the dashed line is the point given by (22), where ν =
−0.649. This indicates that two transmissions at threshold θ̄(e−ν , eν) =
(19.1, 5.23) have a probability of 91% of succeeding (the value of the solid
curve at ν = −0.649). The other parameters are Δ̂ = 1/3, p = 1/3,
δ = 2/5.

2) Probability of succeeding at least once: Alternatively,
one may want to ensure that the probability of succeeding
at least once in two transmissions is the same as in the
independent case. This is guaranteed if

1− P2(θ1, θ2) = 1− (1− P(SIR1 > θ1))
2

or, equivalently,

1− P2(θ̄e
−ν , θ̄eν) = 1− (1− P(SIR1 > θ̄e−ν))2. (21)

To solve this equation for ν, we approximate 1 −
P2(θ̄e

−ν , θ̄eν) � 1− P2(θ̄, θ̄) = p
1|2
s (0), which is valid since

p
1|2
s (0) is the minimum of p1|2s (ν) per Cor. 4 and the curvature

given by B in (19) is small4. Hence an approximate solution
of (21) is given by

e−νδ =

− log

(
1−
√
1− p

1|2
s (0)

)
Δ̂pθ̄δ

. (22)

p
1|2
s (0) is calculated in (18) and denoted by A.
In Fig. 7, the design procedure is illustrated. At θ̄ = 10, the

probabilities 1− P2(θ1, θ2) and 1− (1− P(SIR1 > θ1))
2 are

shown in solid and dashed curves, respectively. First we ob-
serve that while independent transmission success would yield
a success probability of 94% at θ̄ = 10, the actual success
probability is slightly less than 91%. The two curves intersect
at ν ≈ −0.6. So if a threshold of θ̄e0.6 ≈ 18.2 was used in the
independent case and thresholds θ̄(e0.6, e−0.6) ≈ (18.2, 5.5)
were used for the two transmissions in the dependent case,
the success probability would be about 91% in both cases.

4A numerical investigation shows that the second derivative B achieves
its maximum value of 0.3248 for Δpθ̄δ = 2.456 and δ = 1. For most
parameters, B is significantly smaller. For the ones in Fig. 6, for example,
B = 0.075 for p = 1/2 and B = 0.02 for p = 1/4.
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So the penalty in the SIR threshold due to the correlation
is about e1.2 ≈ 3.32. This is the necessary reduction in the
threshold for the second transmission to achieve the same two-
transmission success probability as in the independent case.

Since the intersection between the solid and dashed curves
cannot be calculated in closed form, the intersection between
1 − P2(θ̄, θ̄) (the dash-dotted curve) is used instead, which
yields the slightly conservative value of ν = −0.649.

3) Conditional success probability after failure: Lastly, one
may want to choose the threshold for the second transmission
such that the conditional success probability after a failure is
still as large as the success probability in the independent case,
i.e., the problem is to find θ2 such that

P(SIR2 > θ2 | SIR1 < θ1) = P(SIR1 > θ1).

We have

P(S2 | S̄1) = 1− P(S̄2 | S̄1) = 1− P2(θ1, θ2)

P(S̄1)

=
e−Δ̂θδ

2p − e−Δ̂D̂(p,δ,θ1,θ2)

1− e−Δ̂θδ
1p

This should be the same as P(S1) = e−Δ̂θδ
1p. The resulting

equation

e−Δ̂pθδ
2 − e−Δ̂D̂(p,δ,θ1,θ2) = e−Δ̂pθδ

1 (1− e−Δ̂pθδ
1 )

can be numerically solved for θ2.

V. RANDOM LINK DISTANCE AND LOCAL DELAY

A. Random link distance

Now we let the transmission distance be a random variable
(which is constant over time), denoted by R. We consider the
case where R is Rayleigh distributed with mean 1/(2

√
μ),

since this is the nearest-neighbor distance distribution in a PPP
of intensity μ [16]. This situation models a network where the
receivers form a PPP of intensity μ, independently of the PPP
of (potential) transmitters of intensity λ, and each transmitter
attempts to communicate to its closest receiver. To remain
consistent with the assumption of the typical receiver residing
at the origin and its desired transmitter being active in each
time slot, we add the point o to the receiver PPP and an always
active transmitter at distance R. The joint success probability
over this link of random distance is denoted by p̃

(n)
s .

Corollary 5 (Joint success probability with random link
distance). If the link distance is Rayleigh distributed with
mean 1/(2

√
μ), the joint success probability in n transmission

attempts is given by

p̃(n)s =
μ

μ+ λθδΓ(1 + δ)Γ(1− δ)Dn(p, δ)
. (23)

Proof: The distance distribution is fR(r) = 2πμre−πμr2 .
Letting Δ′ = Δ/r2, we have

p̃(n)s = 2πμ

∫ ∞

0

exp(−Δ′r2Dn(p, δ)) exp(−πμr2)rdr

=
πμ

πμ+Δ′Dn(p, δ)
.

(24)

Expanding the diversity polynomial, p̃(n)s can be written for
p → 0 as

p̃(n)s = 1− nΔ′

πμ
p+

[(
n

2

)
Δ′(1− δ)

πμ
+ n2 Δ′2

(πμ)2

]
p2+O(p3),

which provides a good approximation for small p.
If all nodes transmit with probability p (including the

desired one) and the receiver process has intensity (1 − p)λ,
we have μ = (1− p)λ, and

p̃(n)s =
pn(1− p)

1− p+ θδΓ(1 + δ)Γ(1 − δ)Dn(p, δ)
,

where the factor pn is the probability that the transmitter under
consideration is allowed to transmit n times in a row.

B. The local delay and the critical probability

Let the local delay be defined as

M � arg mink∈N{Sk occurs}.
It denotes the time until the first successful transmission
(starting at time 1). For a deterministic link distance, we have

P(M > n) = p(n)o = 1− p1|ns ,

and the delay distribution is

P(M = n) = p1|ns − p1|n−1
s

=
n∑

k=1

(−1)k+1

(
n− 1

k − 1

)
exp(−ΔDk(p, δ)).

The mean local delay or simply mean delay can be expressed
as

EM =
∞∑
k=0

P(M > k) =
∞∑
k=0

p(k)o .

While this sum cannot be directly evaluated, the mean can be
obtained using the fact that outage events are conditionally
independent given Φ, i.e., by taking an expectation of the
inverse conditional Laplace transform of the interference, see
[8, Lemma 2]. This yields

EM = exp

(
Δ

p

(1− p)1−δ

)
. (25)

So for a deterministic link distance, the mean delay is finite
for all p < 1.

For random (but fixed) link distance, the mean delay is
analogously expressed as

EM =
∞∑
k=0

p̃(k)o , (26)

where p̃
(k)
o can be expressed using the joint success proba-

bilities from Cor. 5. It turns out that in this case, it is not
guaranteed for EM to be finite for any p > 0. In fact, it was
shown in [7] that EM < ∞ if and only if

Δ′p
(1− p)1−δ

< πμ, (27)

where Δ′ = λπθδΓ(1 + δ)Γ(1− δ) as above.
Here we would like to explore whether this phase transition,

i.e., the existence of a critical transmit probability pc < 1 such
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Fig. 8. Critical probability for finite mean delay for dependent and
independent interference as a function of δ for θ = 10 and λ/μ = 1 and
λ/μ = 1/4.

that EM = ∞ for p ≥ pc, is mainly due to the random link
distance or due to the interference correlation. The following
corollary establishes the condition for finite mean delay if
interference was independent.

Corollary 6 (Mean delay and critical transmit probability
with independent interference). For a Rayleigh distributed
(but fixed) link distance and independent interference, the
mean local delay is

EM =
πμ

πμ−Δ′p
, Δ′p < πμ, (28)

and the critical probability is

pindc =
πμ

Δ′ . (29)

Proof: Let ps(r) = exp(−Δ′pr2) be the success proba-
bility of a transmission over distance r. Since interference is
assumed independent from slot to slot, the mean local delay
given r is 1/ps(r), thus, averaging over the link distance,

EM = ER(1/ps(R)) =
πμ

πμ−Δ′p
, Δ′p < πμ,

where R is Rayleigh with mean 1/(2
√
μ).

So even if the interference was independent from slot to
slot, the static random transmission distance would cause the
local delay to become infinite if the spatial contention or
the transmit probability are too large. The critical transmit
probability pc is shown in Fig. 8 for the cases of independent
and dependent interference and different ratios λ/μ as a
function of δ for θ = 10. The parameter Δ′ in (27) and (29)
strongly depends on δ. The two critical probabilities pc < pindc

divide the range of p into three regimes: For p < pc, the mean
delay is always finite. For pc ≤ p < pindc , the mean delay is
finite only if the interference is independent. For p > pindc , the
mean delay is always infinite.

It can be seen that for α < 3 (δ > 2/3), pc ≈ pindc , which
indicates that in this regime, the divergence of the mean local
delay is mainly due to the random transmission distance.

C. Alternative expression of the mean local delay and a
binomial identity

As mentioned above in (26), the mean delay EM can also
be expressed as a sum of p̃(n)o . The joint success probability,
averaged over the link distance, is given in Cor. 5. With
independent interference, the diversity polynomial is replaced
by np, and applying inclusion-exclusion to (23) yields

p̃(n)o =

n∑
k=0

(−1)k
(
n

k

)
1

1 + kΔ′′p
,

where Δ′′ = Δ′/(πμ). The mean delay follows as

EM =

∞∑
n=0

n∑
k=0

(−1)k
(
n

k

)
1

1 + kΔ′′p
.

This is identical to (28), which implies that

∞∑
n=0

n∑
k=0

(−1)k
(
n

k

)
1

1 + kβ
≡ 1

1− β
, β < 1.

This identity may be of independent interest.
Using p̃

1|n
s = 1− p̃

(n)
o , the delay distribution with indepen-

dent interference can be calculated as follows.

P(M = n) = p̃1|ns − p̃1|n−1
s

=

n∑
k=1

(−1)k+1

(
n− 1

k − 1

)
1

1 + kΔ′′p

=
1

Δ′′np
(
n+1/(Δ′′p)

n

)
=

1

Δ′′np
Γ(n+ 1)Γ(1 + 1/(Δ′′p))
Γ(n+ 1 + 1/(Δ′′p))

� Γ(1 + 1/(Δ′′p))
nΔ′′p

n−1/(Δ′′p).

The bound is obtained from a bound on the ratio of gamma
functions n1−s < Γ(n + 1)/Γ(n + s) [17, Eqn. (1.1)]. It is
asymptotically exact as n → ∞. It reveals that Δ′′p < 1
is a necessary and sufficient condition for a finite mean,
reproducing the result in (29) via a different approach.

D. Mean local delay calculation based on Taylor expansion

Here we use the linear approximation from (10) to calculate
the mean delay. With

p̂(n)o = Δpn
Γ(n− δ)

Γ(n)Γ(1− δ)
,

we have

M̂n =

n∑
k=0

p̂(k)o

= 1 +Δp(1− p)δ−1−
Δpn+1Γ(n+ 1− p)H([1, n+ 1− δ], n+ 1, p)

Γ(n+ 1)Γ(1− δ)
,

where H is the hypergeometric function. M̂ � limn→∞ M̂n

will be the estimated mean delay.
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Expanding the hypergeometric function, we have

M̂n = 1 +Δp(1 − p)δ−1−

Δpn+1
∞∑
k=0

pk
Γ(n+ 1)Γ(n+ k + 1− δ)

Γ(n+ 1− δ)Γ(n+ 1 + k)︸ ︷︷ ︸
G

.

The negative term goes to zero since the sum G is bounded
by (1−p)−1. Again applying the bound from [17] and noting
that it is asymptotically exact as n → ∞,

G ∼
∞∑
k=0

pk
(

n+ 1

n+ k + 1

)δ

< (1 − p)−1.

So for n → ∞, we obtain

M̂ = lim
n→∞Mn = 1 +Δp(1 − p)δ−1 +O(p2), p → 0.

Remarkably, this is exactly the first-order expansion of EM
as given in (25). The expression is also correct if O(p2) is
replaced by O(Δ2) and interpreted as Δ → 0.

VI. CONCLUSIONS

We have shown that the joint success probability of n trans-
missions in a Poisson field of interference can be expressed
in closed-form using the diversity polynomial. An important
consequence of this result is that there is no retransmission di-
versity in Poisson networks for simple retransmission schemes.
We conjecture that the same result holds for all interference
fields induced by stationary point processes of interferers.

The impact of interference correlation is less severe if the
transmit probability p is small or the path loss exponent α is
near 2. As a rule of thumb, we can state that if p(1 − δ) <
1/10, the assumption of independent interference may provide
a good approximation. Conversely, if p(1−δ) is not small, the
correlation should definitely be considered in the performance
analysis.

For the two-transmission case, the complete joint SIR
distribution has been established. It shows that the joint outage
probability is maximized when the same rate is used in both
transmissions, and it allows the determination of the SIR
thresholds such that the resulting success or outage proba-
bilities equal the ones that would be obtained if interference
was independent across slots.

Lastly, we have calculated the distribution of the local delay
and shown that the phase transition phenomenon first observed
in [7] occurs even when the interference is independent—as
long as the link distance is random (but fixed).

APPENDIX: PROOFS

A. Proof of Theorem 1

Proof: We would like to calculate the joint success
probability p

(n)
s = P(S1 ∩ . . . ∩ Sn). Let

Ik =
∑
x∈Φk

hx,k‖x‖−α

be the interference in time slot k,

H(n)
x =

n∑
k=1

1(x ∈ Φk)hx,k, x ∈ Φ,

the sum of the fading coefficients of interferer x when it is
active, and θ′ = θrα. The event Sk = {SIRk > θ} can then
be expressed as {hk > θ′Ik}, and we have

p(n)s = P(h1 > θ′I1, . . . , hn > θ′In)
(a)
= E(e−θ′I1 · · · e−θ′In)

= E

[
exp

(
−θ′

∑
x∈Φ

H(n)
x ‖x‖−α

)]

(b)
= E

[∏
x∈Φ

(
p

1 + θ′‖x‖−α
+ 1− p

)n
]

(c)
= exp

⎛
⎜⎜⎜⎝−λ

∫
R2

[
1−
(

p

1 + θ′‖x‖−α
+ 1− p

)n]
dx︸ ︷︷ ︸

Fn

⎞
⎟⎟⎟⎠ .

Here (a) follows from the independence of the fading random
variables, (b) from the expectation with respect to the fading
and ALOHA, and (c) from the probability generating func-
tional (pgfl) of the PPP [15]. To evaluate the integral Fn, we
first write it in polar form using v = ‖x‖.

Fn = 2π

∫ ∞

0

[
1−
(

pvα

vα + θ′
+ 1− p

)n]
vdv (30)

(a)
= πδ

∫ ∞

0

[
1−
(
1− pθ′

u+ θ′

)n]
uδ−1du

(b)
= πδ

n∑
k=1

(
n

k

)
(−1)k+1pkθ′k

∫ ∞

0

uδ−1

(u+ θ′)k
du (31)

(a) follows from the substitution u = vα and δ = 2/α and (b)
from the binomial expansion of (1− pθ′

u+θ′ )
n.

For this integral, we know from [18, Eqn. 3.196.2] that

∫ ∞

0

uδ−1

(u+ θ′)k
du = θ′δ−kB(k − δ, δ), (32)

where B(k − δ, δ) = Γ(k−δ)Γ(δ)
Γ(k) is the beta function. Since

Γ(k − δ)Γ(δ − k + 1) =
π

sin(π(k − δ))
,

we have

Γ(k − δ) =
(−1)k+1π

sin(πδ)Γ(δ − k + 1)
,

and it follows that

Fn = πθ′δ
πδ

sin(πδ)

n∑
k=1

(
n

k

)
pk

Γ(δ)

Γ(k)Γ(δ − k + 1)
.

The ratio of the gamma functions on the right can be expressed
as
(
δ−1
k−1

)
. Noting that θ′δ = θδr2, we obtain the result.
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B. Proof of Lemma 1

Proof: Expanding the exponential terms in (6) as e−x =

1− x+O(x2), the first-order expansion of p1|ns in Δ or p is

p1|ns ∼
n∑

k=1

(−1)k+1

(
n

k

)
(1−ΔDk(p, δ))

=

n∑
k=1

(−1)k+1

(
n

k

)⎛⎝1−Δ

k∑
j=1

(
k

j

)(
δ − 1

j − 1

)
pj

⎞
⎠

= 1−Δ

n∑
k=1

(−1)k+1

(
n

k

) k∑
j=1

(
k

j

)(
δ − 1

j − 1

)
pj

︸ ︷︷ ︸
Gn

.

Re-writing the double sum Gn in terms of equal powers of p
yields

Gn =
n∑

j=1

pj
(
δ − 1

j − 1

) n∑
k=j

(−1)k+1

(
n

k

)(
k

j

)
.

In this expression, the inner sum simplifies to
n∑

k=j

(−1)k
(
n

k

)(
k

j

)
=

n∑
j=1

1

j!

dj

duj
(1 − u)n

∣∣∣
u=1

= (−1)n1(j = n)

since all derivatives of (1− u)n contain a factor 1− u except
the nth. So

Gn = (−1)n+1pn
(
δ − 1

n− 1

)
and, therefore,

p1|ns ∼ 1− (−1)n+1Δpn
(
δ − 1

n− 1

)
= 1−Δpn

Γ(n− δ)

Γ(n)Γ(1 − δ)
.

C. Proof of Corollary 3

Proof: The first steps in the proof are the same as for
Thm. 1 (see Appendix A). The integral (30) is replaced by

Fn = 2π

∫ ∞

0

[
1−
(

p	(v)

	(v) + θ′
+ 1− p

)n]
vdv, (33)

where 	(v) = max{1, vα} and θ′ = θ	(r). We split the
integral into two parts, one for v ∈ [0, 1] and one for v > 1,
denoted as F

[0,1]
n and F>1

n , respectively. For the first part, we
have

F [0,1]
n = 2π

∫ 1

0

[
1−
(
1− pθ′

1 + θ′

)n]
rdr

= π

n∑
k=1

(
n

k

)
(−1)k+1

(
pθ′

1 + θ′

)k

.

For the second part, we need to calculate the integral (32) but
from 1 to ∞. From [18, Eqn. 3.197.8] we know∫ ∞

1

uδ−1

(u+ θ′)k
du =

θ′−k

[
θ′δ

Γ(k − δ)Γ(δ)

Γ(k)
− δ−1H([k, δ], 1 + δ,−1/θ′)

]
,

where H is the hypergeometric function. Using (31), it follows
that

F>1
n = π

n∑
k=1

(
n

k

)
(−1)k+1pk

[
θ′δδ

Γ(k − δ)Γ(δ)

Γ(k)
−

H([k, δ], 1 + δ,−1/θ′)
]
.

Adding F
[0,1]
n and F>1

n yields the result.
For the comparison with the unbounded case, we note that for
r ≥ 1, the difference between the two cases is due to the term

�(v)
�(v)+θ′ for v < 1 in (33), which is 1

1+θrα in the bounded

case and vα

vα+θrα in the unbounded case. For v ≥ 1, they
are identical. Since vα

vα+θrα < 1
1+θrα for v < 1, it follows

that p(n)s,bd > p
(n)
s for r ≥ 1. For r < 1 the situation may be

reversed since now the comparison is between vα

vα+θrα and
1

1+θ , and there will be some v < 1 for which v > r, so

p
(n)
s,bd < p

(n)
s may occur.

D. Proof of Theorem 2

Proof: From the pgfl, the joint probability is given by
exp(−λr2F2), where

F2 = 2π·∫ ∞

0

(
1−
[

prα

rα + θ1
+ 1− p

] [
prα

rα + θ2
+ 1− p

])
rdr.

Substituting u = rα, we have

F2 = πδ

∫ ∞

0

(
pθ1

[
1− pθ2

θ2 − θ1

]
uδ−1

u+ θ1
+

pθ2

[
1− pθ1

θ1 − θ2

]
uδ−1

u+ θ2

)
du

(a)
= π

πδ

sin(πδ)

(
pθδ1

[
1− pθ2

θ2 − θ1

]
+ pθδ2

[
1− pθ1

θ1 − θ2

])

= π
πδ

sin(πδ)

(
p(θδ1 + θδ2) + p2

θδ1θ2 − θδ2θ1
θ1 − θ2

)
.

(a) follows from (32). This proves (13). The form (14) can
be obtained by expressing θ1 and θ2 by θ̄e−ν and θ̄eν ,
respectively, and using coshx ≡ (ex + e−x)/2 and sinhx ≡
(ex − e−x)/2 twice.

Lastly, we need to show that

g(ν) = 2 cosh(νδ) − p
sinh(ν(1 − δ))

sinh ν
(34)

is minimized at g(0) = 2 − p(1 − δ). Since g is even, it
is sufficient to focus on ν ≥ 0. g(ν) ≥ g(0) holds since
coshx ≥ 1 and

−p sinh(ν(1 − δ)) ≥ −p(1− δ) sinh ν,

due to the convexity of sinhx for x ≥ 0 and the fact that
δ ∈ [0, 1].
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E. Proof of Corollary 4

Proof: We need to show that f(ν) � p
1|2
s (ν)−p

1|2
s (0) ≥

0 for all parameters, where p1|2s (ν) = 1−P2(θ̄e
−ν , θ̄eν). From

(17) we have

f(ν) = 2 exp(−Δ̂pθ̄δ cosh(νδ)) cosh(Δ̂pθ̄δ sinh(νδ))−
2 exp(−Δpθ̄δ)+

exp
(
−Δ̂pθ̄δ(2 − p(1− δ))

)
− exp

(
−Δ̂pθ̄δg(ν)

)
,

where g(ν) is given in (34). f(ν) ≥ 0 holds since coshx ≥ 1
and, as already established in the proof of Thm. 2, g(ν) ≥
g(0) = 2− p(1− δ).
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