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Abstract—Quasi-cyclic low-density parity-check (QC-LDPC)
codes based on protographs are of great interest to code designers
because of their implementation advantages and algebraic prop-
erties that make them easy to analyze. However, the protograph
structure imposes undesirable fixed upper limits on important
code parameters. In this paper, we show that the upper bound
on the minimum Hamming distance of protograph-based QC
codes can be improved by the careful application of a two-
step lifting procedure applied to the protograph. The promised
improvement is validated by constructing codes with minimum
distance exceeding the upper bound for QC codes based on a
particular protograph.

I. INTRODUCTION

A protograph [1] is a small Tanner graph [2] described
by an nc × nv incidence matrix B, known as a base matrix,
that consists of non-negative integers Bi,j that correspond to
Bi,j parallel edges in the graph. A protograph-based code
is obtained by taking an N -fold graph cover [3] of a given
protograph and can be described by an Nnc × Nnv parity-
check matrix obtained by replacing each non-zero entry Bi,j

by a sum of Bi,j permutation matrices of size N ×N and a
zero entry by an N ×N all-zero matrix. Low-density parity-
check (LDPC) codes [4] based on a protograph form a subclass
of multi-edge type codes that have been shown to have many
desirable features, such as good iterative decoding thresholds
and, for suitably-designed protographs, linear minimum dis-
tance growth, i.e., they are asymptotically good (see, e.g., [5]).

Members of the protograph-based LDPC code ensemble that
are quasi-cyclic (QC) are of great interest to code design-
ers, since they can be encoded with low complexity using
simple feedback shift-registers [6] and their structure leads
to efficiencies in decoder design. Moreover, QC codes can
be shown to perform well compared to random codes for
moderate block lengths [7], [8]. The construction of QC-
LDPC codes can be seen as a special case of the protograph-
based construction in which the N -fold cover is obtained
by restricting the edge permutations to be cyclic and can be
described by an Nnc×Nnv parity-check matrix formed as an
nc × nv array of N ×N circulant matrices. However, unlike
typical members of an asymptotically good protograph-based
LDPC code ensemble, codes from the QC sub-ensemble do
not have linear distance growth. Indeed, if the protograph base
matrix consists of only ones and zeros, then the minimum
Hamming distance is bounded above by (nc + 1)!, where nc

is the number of check nodes in the protograph [9], [10].

In [11], partially quasi-cyclic codes were introduced, where
only a selection of the permutation matrices used in the
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protograph-based construction are chosen to be circulants. Al-
gebraic conditions were derived for the permutation matrices
describing the N -fold graph covers of a given protograph
that ensure higher girth and minimum distance than the upper
bounds for QC codes. In this paper, we show that it is possible
to achieve a similar improvement in minimum distance by
choosing N × N permutation matrices that are composed
of a sub-array of r × r circulant matrices. As a result, we
can achieve an increase in the girth and distance parameters
of the code while maintaining the circulant-based structure
facilitating efficient implementation. The procedure consists of
two stages: first, a “pre-lifting” step where we take an m-fold
graph cover of the protograph, where m is typically small, and
second, a circulant-based lifting step where we take an r-fold
graph cover of the pre-lifted protograph, with the permutations
chosen to be cyclic.
The paper is structured as follows. In Section II, we provide

the necessary background material, describe the structure of
the QC sub-ensemble of protograph-based codes, and review
an existing bound concerning the minimum Hamming distance
of QC protograph-based codes. In Section III, we introduce the
concept of pre-lifting. In Section IV-A, we demonstrate this
construction technique on a simple (2, 3)-regular protograph,
and derive circulant-based codes with minimum distance and
girth exceeding the original QC bounds after pre-lifting. Sec-
tion IV-B provides a similar analysis for a (3, 4)-regular pro-
tograph. Finally, concluding remarks are given in Section V.

II. QUASI-CYCLIC PROTOGRAPH-BASED LDPC CODES

One of the main advantages of QC-LDPC codes is that they
can be described simply, and as such are attractive for imple-
mentation purposes (see, e.g., [6]). In this section we describe
the protograph construction method and, in particular, focus
on the QC sub-ensembles of protograph-based ensembles of
LDPC codes.

A. Definitions

All the codes in this paper will be binary linear codes.
As usual, an [n, k, dmin] code C of length n, rank k, and
minimum Hamming distance dmin can be specified as the null
space of an (n−k)×n (scalar) parity-check matrix H. With a
parity-check matrix H we associate a Tanner graph [2] in the
usual way. The girth of a graph is the length of the shortest
cycle in the graph.

B. Permutations and permutation matrices

An N -permutation p is a one-to-one function on the set
S ! {0, 1, . . . , N − 1} described as:

p !

(

0 1 . . . N − 1
p(0) p(1) . . . p(N − 1)

)

.
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A permutation p can be represented by an N×N permutation
matrix P, where P has all entries equal to zero except for N
entries equal to one at positions (i, p(i)), i∈S . We say that a
(permutation) matrix has a fixed column (or row) if it overlaps
with the identity matrix in at least one column (or row).

C. Protograph-based code construction

As described in Section I, a protograph [1] is a small bipar-
tite graph, represented by a parity-check or base biadjacency
matrix B. The parity-check matrix H of a protograph-based
LDPC block code can be created by replacing each non-zero
entry in B by a sum of Bi,j permutation matrices of size
N ×N and a zero entry by the N ×N all-zero matrix, where
Bi,j is a non-negative integer. Graphically, this operation is
equivalent to taking an N -fold graph cover, or “lifting”, of
the protograph. It is an important feature of this construction
that each lifted code inherits the degree distribution and local
graph neigbourhood structure of the protograph. The ensemble
of protograph-based LDPC codes with block length n = Nnv ,
denoted ξB(N), is defined as the set of matrices H that
can be derived from a given base matrix B by all possible
combinations of N ×N permutation matrices.

D. Structure of QC sub-ensembles

The QC sub-ensemble of ξB(N), denoted ξQC
B

(N), is the
subset of parity-check matrices in ξB(N) where all of the
permutation matrices are chosen to be circulant. The notation
Ia is used to denote the N ×N identity matrix with each row
cyclically shifted to the left by a positions. The N×N identity
matrix will be denoted by I0 or I. The set of all such matrices
comprise the circulant subset of the set of N×N permutation
matrices. When applying the copy-and-permute operation, by
restricting the choice of permutation matrices to come from
this subset, the resulting parity-check matrix H will be QC,
i.e., H ∈ ξQC

B
(N) ⊆ ξB(N). In graphical terms, we refer

to this operation as a “circulant-based lifting”. For example,
the shortened (3, 4)-regular QC Tanner code (see [12]) has a
parity-check matrix, lifted from the 3×4 all-ones base matrix
B, given by

H =





I1 I2 I4 I8
I5 I10 I20 I9
I25 I19 I7 I14



 ∈ ξQC
B

(N). (1)

For lifting factor N = 31, this parity-check matrix defines a
[124, 33, 24] code with girth 8.
Note that the sub-ensemble ξQC

B
(N) is smaller than the

ensemble ξB(N). This follows since there are only N out
of N ! permutations that are circulant, i.e., the fraction of
choices of permutation matrices that are circulant is N/N ! =
1/(N−1)!, which tends to zero as N → ∞. It follows that, if
the base matrix B contains only ones and zeros, the fraction
of codes in the ensemble that are circulant is (1/(N − 1)!)t,
where t is the number of ones in B. Repeated edges in B
further reduce this fraction.

E. Minimum Hamming distance bounds for QC sub-ensembles

If the base matrix B contains only ones and zeros, then it
is well known that the minimum distance of any code from
the QC sub-ensemble of protograph-based LDPC codes can
immediately be bounded above by (nc+1)! [9], [10]. In [12],
Smarandache and Vontobel provided an improved bound that,

in addition to giving tighter bounds for binary base matrices in
many cases, can also be applied to base matrices with entries
larger than one, i.e., protographs with repeated edges. Let the
permanent of an m×m matrix M be defined as

perm(M) =
∑

p

m−1
∏

x=0

Mx,p(x),

where Mx,p(x) is the entry in M at position (x, p(x)) and we
sum over the m! permutations p of the set {0, . . . ,m − 1}.
Then the minimum distance of a code drawn from the QC
sub-ensemble can be upper bounded as follows:
Theorem 1: Let C be a code from ξQC

B
(N), the QC sub-

ensemble of the protograph-based ensemble of codes formed
from base matrix B. Then the minimum Hamming distance
of C is bounded above as1

dmin(C) ≤ min∗
S⊆{1,...,nv}
|S|=nc+1

∑

i∈S

perm(BS\i), (2)

where perm(BS\i) denotes the permanent of the matrix con-
sisting of the nc columns of B in the set S\i.

Note that, for all the protographs that we consider in this
paper, the bound that we obtain on the minimum distance using
(2) is at least as tight as (nc +1)!, and in many cases tighter.

III. PRE-LIFTING A PROTOGRAPH

In this paper, we restrict our attention to base matrices
B with entries no larger than 1, i.e., protographs without
parallel edges. Consequently, if entry Bi,j of B is equal to
one, then the corresponding block of the lifted parity-check
matrix consists of anN×N permutation matrixPi,j . Applying
Theorem 1 to B, we obtain a finite upper bound on the
minimum distance of any code C derived from B, where the
permutation matrices Pi,j are chosen to be circulant, for an
arbitrarily large lifting factor N .

We will show that by choosing some of the N×N permuta-
tion matrices Pi,j to be circulant, and the remaining matrices
Pi,j to be composed of a sub-array of r× r smaller circulant
matrices, we can derive QC codes with minimum distance
exceeding the upper bound for the original protograph. This
construction technique can be defined in two stages:

1) first, a “pre-lifting” step where we take a carefully
chosen m-fold graph cover of the protograph with base
matrix B, where m is typically small, to form a pre-
lifted base matrix B′,

2) following this, we perform a circulant-based lifting
step by taking an r-fold graph cover of the pre-lifted
protograph associated with B′, where the permutations
are chosen to be cyclic, creating a QC code with parity-
check matrix H.

Clearly, the pre-lifted base matrix B′ defines a code that exists
in the ensemble ξB(m), and the QC code with parity-check
matrix H obtained after the circulant lifting step exists in
ξB(mr); however, H does not necessarily exist in ξQC

B
(mr)

and thus the minimum distance bound calculated for B using
(2) may be exceeded. Note that, since H ∈ ξB(mr), the re-
sulting code preserves the local graph neigbourhood structure
and degree distribution of the protograph.

1The min∗{·} operator returns the smallest non-zero value from a set. In
this context, if the all-zero codeword arises from a constructed matrix, this
operator ensures that 0 is disregarded as an upper bound in the minimization.
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IV. CONSTRUCTING GOOD CIRCULANT-BASED LDPC
CODES BY PRE-LIFTING PROTOGRAPHS

In this section, we will demonstrate the pre-lifting technique
by considering two examples. First, we consider a simple
(2, 3)-regular protograph that is useful to describe the method
and is easy to analyse. Then, we consider a more practically
interesting (3, 4)-regular protograph, demonstrating the suc-
cessful application of the techniques to a protograph with
larger node degrees.

A. Case study: a (2, 3)-regular protograph

We begin our study with a base matrix of column weight 2,
and in particular, a 2× 3 base matrix. Note that, without loss
of generality, a 2× 3 all-ones base matrix can be N -lifted to
the following matrix (see [11])

H =

[

I I I
I P Q

]

, (3)

where P and Q are two permutation matrices and I is the
identity matrix, all of size N ×N .
Remark 2: Note that in a parity-check matrix with column

weight 2, any cycle corresponds to a codeword. This can be
observed in the associated Tanner graph by assigning the value
1 to the variable nodes participating in the cycle and the value
0 to the remaining variable nodes.
Example 1. For parity-check matrix (3), setting N = 3 and

choosing P = I1 and Q = I2, we obtain a parity-check matrix
H ∈ ξQC

B
(3) with girth 8 and, correspondingly, dmin = 4. To

obtain girth 12, we must increase the permutation matrix size
to at least N = 7. By choosing circulant permutations P = I4
and Q = I6, H ∈ ξQC

B
(7) and the resulting code has girth 12

and, correspondingly, dmin = 6.
Thus, in order to achieve girth 8 and 12, we can choose

circulant permutation matrices of small size. However, by
applying Theorem 1 to the base matrix B, we find that any
code drawn from the QC sub-ensemble ξQC

B
(N) has minimum

distance at most 6, or equivalently, girth at most 12. In other
words, we cannot exceed a girth of 12 unless we choose non-
circulant permutation matrices P and Q. !

In [11], a set of minimal conditions for P and Q were
derived in order to guarantee girth greater than 12. We will
now show that these conditions can be achieved for block-
circulant permutation matrices P and Q.
1) Pre-lifting a 2×3 protograph: Consider again the 2×3

all-ones base matrix B. Suppose we set the pre-lifting factor
as m = 2 and obtain the following lifted base matrix:

B′ =









1 0 1 0 1 0
0 1 0 1 0 1
1 0 1 0 0 1
0 1 0 1 1 0









∈ ξB(2). (4)

By applying Theorem 1, we find that a code C drawn from
the QC sub-ensemble ξQC

B′ (r) with base marix B′ has its
minimum distance bounded above by dmin(C) ≤ 10 (and
hence the girth of the parity-check matrix bounded above by
girth(H) ≤ 20). Note that, as B′ is m-lifted from B, the
search space for good pre-lifted base matrices B′ consists of,
at most, only m!2 parity-check matrices where m is small.
How to choose the covering graph to use at the pre-lifting
step will be discussed in more detail later. Using elementary

row and column operations, every parity-check marix H from
the ensemble ξB′(r) can be written in the form

H =









I 0 I 0 I 0
0 I 0 I 0 I

I 0 P1 0 0 Q1

0 I 0 P2 Q2 0









=

[

I I I
I P Q

]

, (5)

where permutation matrices P1,P2,Q1, and Q2 are of size
r × r, and P and Q are of size N × N = 2r × 2r. The
QC sub-ensemble ξQC

B′ (r) can then be described by the set of
all parity-check matrices H, where P1,P2,Q1, and Q2 are
restricted to be circulant permutation matrices. It can easily be
shown that the improvement in minimum distance and girth
promised by the application of Theorem 1 can be achieved by
codes from ξQC

B′ (r). For example, setting r = 9 and choosing
P1,P2,Q1, and Q2 as I1, I2, I0, and I6, respectively, gives
a [54, 19, 8] code with girth(H) = 16, and choosing the
matrices as I1, I9, I0, and I4, respectively, with r = 20
gives a [120, 41, 10] code with girth(H) = 20. Using this
configuration, we find that r = 9 and r = 20 are the smallest
possible circulant sizes that enable us to construct codes
with girths 16 and 20, corresponding to minimum distances
dmin = 8 and dmin = 10, respectively. There are 216 (2880)
such codes in the r = 9 (r = 20) QC sub-ensembles.

In other words, by choosing P and Q to be an array of
circulants, or block-circulant, rather than just searching for
random permutations, we obtain a significant improvement
in girth and minimum distance while maintaining the desir-
able circulant structure facilitating simplified encoding and
decoding. Moreover, the search space is greatly reduced. In
searching for a code with pre-lifting factor m and circulant
lifting factor r, the block-circulant permutation matrix P has
rm choices, whereas there are (mr)! choices for a permutation
matrix P of size mr. For example, in searching for a code
with minimum distance dmin(C) = 8 with m = 2 and r = 9
there are rm = 81 choices for the block-circulant permutation
matrix, wheras there are mr! = 18! choices for a random
permutation matrix of size mr = 18. !

2) Choosing m-fold graph covers for pre-lifting a proto-
graph: Not all choices of covering graph are equivalent at
the pre-lifting step. For example, the possible choices for the
submatrix [P |Q ] in (3) after the pre-lifting step with m = 2
are

[

P1 0 Q1 0
0 P2 0 Q2

]

, (6)

[

P1 0 0 Q1

0 P2 Q2 0

]

, (7)

[

0 P1 Q1 0
P2 0 0 Q2

]

, (8)

[

0 P1 0 Q1

P2 0 Q2 0

]

. (9)

Note that choices (7), (8), and (9) are equivalent, i.e., they can
be shown to be equal using only elementary row and column
operations. Consequently, the lifted ensembles ξQC

B′ (r) consist
of the same set of codes, up to row and column permutations.

Applying the bound (2) to the pre-lifted configuration (6),
we obtain that a code C from the QC sub-ensemble ξQC

B′ (r)
has its minimum distance bounded above as dmin(C) ≤
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12. However, note that the Tanner graph of base matrix
B′ corresponding to (6) consists of two disconnected copies
of the original protograph (or 1-cover). It follows that any
lifted parity-check matrix contains the two following disjoint
substructures:

[

I I I
I P1 Q1

]

and

[

I I I
I P2 Q2

]

,

and consequently has its minimum distance and girth bounded
above as dmin(C) ≤ 6 and girth(H) ≤ 12, respectively. Thus,
in terms of maximizing minimum distance and girth, the pre-
lifting configuration (7) should be chosen.

3) Larger degrees of pre-lifting: Intuitively, the larger we
make the pre-lifting factor m for a fixed block length n, the
more ‘random-like’ the QC sub-ensemble ξQC

B′ (r) becomes
and, as such, we would expect the maximum achievable
minimum distance to increase. We saw earlier that, after
a careful choice of pre-lifting with factor m = 2, the
maximum achievable minimum distance of a circulant-based
lifting increased from dmin(C) ≤ 6 to dmin(C) ≤ 10, and
correspondingly, the maximum achievable girth increased from
12 to 20. In the remainder of this section, we describe how
the minimum distance and girth is affected by increasing the
pre-lifting factor to values of m ≥ 3.
We employ the sieve principle in order to find a good

covering graph to use at the pre-lifting step. Note that every
3-cover can be written in the form of (3), and as such, there
are m!2 = 3!2 = 36 covering graphs to consider for m = 3.
Of these 3-covers, we find that many are equivalent. In fact,
after removing (or sieving out) the equivalent graphs, we are
left with only 5 choices. Of these choices, if any contain
disjoint sub-graphs of a smaller covering graph (m = 1 or
m = 2 in this case), then the minimum distance cannot
exceed the corresponding bound calculated for such a sub-
graph. For a 3-cover, there are two such sub-graphs; either
there are three copies of the 1-cover (3 disjoint copies of the
original protograph), or the lifted graph consists of both a 1-
cover and a 2-cover (a copy of the original protograph and
a disjoint 2-cover). In both cases, a code C drawn from the
QC sub-ensemble has its minimum distance bounded above
as dmin ≤ 6 as a result of the substructure associated with
the 1-cover. For example, the only configuration of [P |Q ]
that results in three copies of the 1-cover is where both P
and Q have a block-identity structure, i.e., the circulants in
the array occur only on the leading diagonal. There are nine
(equivalent) occurences of the second limiting substructure
consisting of both a 1-cover and a 2-cover. One such example
is the substructure





P1 0 0 0 Q1 0
0 P2 0 Q2 0 0
0 0 P3 0 0 Q3



 , (10)

which again results in any code C drawn from ξQC
B′ (r) having

its minimum distance bounded above as dmin(C) ≤ 6 for
arbitrarily large circulant size r.
Note that applying (2) to base matrices containing these

two harmful substructures gives the loose upper bounds
dmin(C) ≤ 24 and dmin(C) ≤ 12, respectively, and so it
is necessary to sieve these choices at this stage. After sieving
the covering graphs containing these limiting substructures,

we are left with 3 candidates for the pre-lifted base matrix B′.
Applying (2) to the remaining choices results in one candidate
that bounds the minimum distance of circulant-based codes
drawn from the ensemble as dmin(C) ≤ 10 and two (non-
equivalent) candidates with bound dmin(C) ≤ 12. Note that
dmin(C) ≤ 10 is achievable by a 2-cover, so this choice is
sieved out, leaving only two remaining choices for the pre-
lifted graph. One of the remaining choices is the 3-cover given
by





P1 0 0 0 Q1 0
0 P2 0 0 0 Q2

0 0 P3 Q3 0 0



 , (11)

and we find that the corresponding bound is indeed
tight. Choosing circulants P1,P2,P3,Q1,Q2, and Q3 as
I1, I5, I25, I4, I7, and I28, respectively, with r = 46 results
in a code C with minimum distance dmin(C) = 12 and
girth(H) = 24.
The procedure can be repeated for m ≥ 4. Applying the

sieve technique to the 4!2 candidate covering graphs for m =
4, we are left with 5 candidates with dmin(C) ≤ 14. This
bound is also found to be tight by constructing codes achieving
a minimum distance that is equal to 14. Table I summarizes
the results we have obtained as a result of pre-lifting the 2×3
all-ones base matrix B.

pre-lifting factor m dmin girth
1 6 12

2 10 20

3 12 24

4 14 28

TABLE I: Largest possible values of the minimum Hamming
distance and girth that are achievable given a particular pre-
lifting factor m.

Note that the minimum distance is not growing very fast in
this example, but this is expected for (2, 3)-regular codes (see
[4]). It does, however, demonstrate an observable improvement
in minimum distance and girth by pre-lifting the protograph. In
the next section we will see more pronounced improvements
by considering a protograph with increased node degrees.

B. Case study: a (3, 4)-regular protograph

We consider the (3, 4)-regular protograph-based ensemble
defined by the all-ones base matrix B of sixe 3 × 4. The
upper bound on the minimum distance for QC codes drawn
from ξQC

B
(N) is dmin(C) ≤ 24. The [124, 33, 24] QC Tanner

code (1) is an example of a code achieving this bound. We
can assume, without loss of generality, that any parity-check
matrix derived from B has the form (see [11])

H =





I I I I
I P Q R
I S T U



 , (12)

where P,Q,R,S,T and U are permutation matrices.
Remark 3: Unlike the 2×3 structure considered in Section

IV-A, the 3×4 base matrix B considered here does not imply
the same relation between girth and minimum distance of the
corresponding protograph-based LDPC code. In the case of
permutation matrices that commute, and therefore also in the

2011 IEEE Information Theory Workshop

353



case of circulant matrices, a 4 or 6 cycle implies the existence
of a codeword with Hamming weight smaller than the upper
bound on the minimum distance for matrices that commute,
i.e., dmin < (nc + 1)! = 24 (see [12]). However, if we allow
general permutation matrices, or block circulant permutation
matrices, this is not necessarily true.

In the remainder of this section, we will show that by pre-
lifting this 3 × 4 base matrix B we can construct circulant-
based codes with minimum distance exceeding the existing
upper bound, dmin(C) ≤ 24, for QC codes drawn from
ξQC
B

(N), even if a 6-cycle exists in the matrix. Moreover,
we observe further improvements by ensuring that the girth of
H is larger than 6.
There are m6 = 64 possible 2-covers of B that can be

considered as candidates B′ for the pre-lifting step. After
sieving out equivalent covering graphs (the 2-covers that are
equal after re-labeling the vertices) there are 5 candidates
left. Note that the only harmful substructure to avoid in a
2-cover is the one occurence of two disjoint 1-covers, where
P,Q,R,S,T, and U all have a block-identity structure. Any
code C drawn from this QC sub-ensemble ξQC

B′ (r) will have
minimum distance bounded above by dmin(C) ≤ 24 for
arbitrarily large r. After sieving out this 2-cover, we have
only 4 remaining candidates. Of these candidates, 2 give
dmin(C) ≤ 120 and 2 give dmin(C) ≤ 116, all significantly
larger than the bound for the 1-cover, dmin(C) ≤ 24.
Example 2. Consider the following 2-cover of B

B′ =

















1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1
0 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
0 1 1 0 0 1 0 1

















, (13)

from which, without loss of generality, any lifted code in the
ensemble ξB′(r) has the parity-check matrix

H =

















I 0 I 0 I 0 I 0
0 I 0 I 0 I 0 I

I 0 P1 0 0 Q1 0 R1

0 I 0 P2 Q2 0 R2 0

I 0 0 S1 T1 0 U1 0
0 I S2 0 0 T2 0 U2

















, (14)

where Pi,Qi,Ri,Si,Ti, and Ui, i = 1, 2, are permu-
tation matrices of size r × r. Note that, by restricting
these permutation matrices to be circulant, codes drawn
from ξQC

B′ (r) have their minimum distance bounded above
by dmin(C) ≤ 116. Choosing the permutation matrices
P1,P2,Q1,Q2,R1,R2,S1,S2,T1,T2,U1, and U2 as cir-
culant matrices I1, I5, I2, I10, I4, I20, I7, I3, I14, I6, I28, and
I9, respectively, results in block-circulant permutation matrices
P,Q,R,S,T, and U that give girth(H) > 4 for r ≥ 31.
For r = 31, we find that dmin = 36 and girth(H) = 6.
By increasing the circulant size to r = 41, we find that
girth(H) = 6 and can determine that the minimum distance
is bounded by 38 ≤ dmin ≤ 48 using MAGMA [13]. Recall
that circulant liftings of B have minimum distance bounded
above as dmin ≤ 24 for arbitrarily large circulant size, and a
cycle of length 6 implies dmin < 24 (see [12]).

Choosing the circulant permutation matrices to be
I1, I5, I10, I10, I13, I13, I7, I7, I11, I11, I2, and I4, respectively,
gives girth(H) > 6 for r ≥ 20. In fact, for only r = 17, we
obtain a [136, 36, 26] code with girth(H) = 8. By increasing
the circulant size to r = 49, the code has girth(H) = 10 and
we can determine that the minimum distance is bounded by
32 ≤ dmin ≤ 56 using MAGMA. !

In this section, we have successfully applied the techniques
of pre-lifting to a (3, 4)-regular protograph. We observed a
large increase in the minimum distance of QC codes lifted
from a 2-cover and we expect this to improve further for larger
pre-lifting factors m.

V. CONCLUSIONS

To realize efficient encoder and decoder implementation,
code designers are interested in the members of a protograph-
based ensemble that are QC. However, direct circulant-based
liftings of a protograph often result in small upper bounds
on the minimum Hamming distance. In this paper we have
shown that these bounds can be increased by applying a two-
step lifting procedure to the protograph. The techniques were
presented in detail for a simple (2, 3)-regular protograph and
then successfully applied to a more practically interesting
(3, 4)-regular protograph. For these ensembles, QC codes
were constructed that demonstrate achievable increases in
minimum distance and girth. Due to space limitations, we have
only presented results for pre-lifting (2, 3)- and (3, 4)-regular
protographs with single edges; however, the construction tech-
nique can be applied to an arbitrary protograph.
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