Linear Dynamic Panel-Data Estimation using Maximum Likelihood and Structural Equation Modeling

Richard Williams, University of Notre Dame (rwilliam@nd.edu)
Paul D. Allison, University of Pennsylvania (allison@statisticalhorizons.com)
Enrique Moral-Benito, Banco de Espana, Madrid (enrique.moral@gmail.com)

Last revised June 1, 2018
Forthcoming in The Stata Journal

Abstract

Panel data make it possible both to control for unobserved confounders and to include lagged, endogenous regressors. Trying to do both at the same time, however, leads to serious estimation difficulties. In the econometric literature, these problems have been addressed by using lagged instrumental variables together with the generalized method of moments (GMM), while in sociology the same problems have been dealt with via maximum likelihood estimation and structural equation modeling. While both approaches have merit, we show that the ML-SEM method is substantially more efficient than the GMM method when the normality assumption is met, and it also suffers less from finite sample biases. We introduce a command named xtdpdml with syntax similar to other Stata commands for linear dynamic panel-data estimation. xtdpdml greatly simplifies the SEM model specification process; makes it possible to test and relax many of the constraints that are typically embodied in dynamic panel models; allows for the inclusion of time-invariant variables in the model, unlike most related methods; and takes advantage of Stata’s ability to use full information maximum likelihood for dealing with missing data. The strengths and advantages of xtdpdml are illustrated via examples from both economics and sociology.

1. Introduction

Panel data make it possible both to control for unobserved confounders and to include lagged, endogenous regressors. Trying to do both at the same time, however, leads to serious estimation difficulties. In the econometric literature, these problems have been addressed by using lagged instrumental variables together with the generalized method of moments (GMM). In Stata, commands such as xtabond, xtdpdsys and xtdpd have been used for these models.

Perhaps reflecting historical disciplinary differences, sociologists (Allison, 2009; Bollen and Brand, 2010) have often taken a different approach. As Allison and his colleagues show (Allison 2009; Allison, Williams and Moral-Benito, 2017), the same problems can be dealt with via

1 The terms exogenous and endogenous are defined in different ways in different research literatures. Here, we define them the same way that the literature on structural equation modeling typically does, which is also the same way that the Stata sem program does when estimating our models: endogenous variables are those that appear as dependent variables in at least one equation (including those that might also be independent variables in another equation); exogenous variables are those that never appear as dependent variables. As we elaborate on below, exogenous variables are further subdivided into different types in our models.
maximum likelihood estimation of structural equation models (SEM). The ML-SEM method is substantially more efficient than the GMM method when the normality assumption is met and suffers less from finite sample biases. In Stata, the \texttt{sem} command can be used for this purpose. Unfortunately, the process for specifying these models with \texttt{sem} is extremely tedious and error prone.

In this paper we introduce a new command, \texttt{xtdpdml}, which fits dynamic panel data models using maximum likelihood. It works as a shell for \texttt{sem}, generating the necessary commands. It can also generate code for running these models in Mplus—a popular stand-alone package for structural equation modeling. \texttt{xtdpdml} tends to work best when panels are strongly balanced, the number of time points is relatively small (e.g. less than 10), and there are no missing data. But it can also often work well when these conditions are not met. Conversely, \texttt{xtdpdml} tends to be slower and have more convergence problems than popular alternatives, but there are ways to minimize these problems. The multidisciplinary strengths and advantages of \texttt{xtdpdml} are illustrated via examples from both economics and sociology.

\texttt{xtdpdml} greatly simplifies the SEM model specification process; makes it possible to test and relax many of the constraints that are typically embodied in dynamic panel models; allows for the inclusion of time-invariant variables in the model, unlike most related fixed effects methods; and takes advantage of Stata's ability to use full information maximum likelihood (FIML) for dealing with missing data. \texttt{xtdpdml} can also estimate models involving lagged reciprocal causation and is sometimes superior to the \texttt{xtreg} command when data are missing or when time-invariant variables are employed. By default \texttt{xtdpdml} also reports a likelihood ratio test of all over-identifying restrictions, and provides access to other fit measures via the \texttt{sem} postestimation command \texttt{estat gof, stats(all)}. Many other \texttt{sem} postestimation commands can be used as well.

2. The Cross-lagged Panel Model

2.1 The GMM Approach. Panel data have two major attractions for making causal inferences: the ability to control for unobserved, time-invariant confounders, and the ability to estimate models with lagged, endogenous regressors—which can be helpful in making inferences about causal direction.

Controlling for unobservables can be accomplished with well-known fixed effects methods (such as the linear fixed effects model that can be optionally estimated with \texttt{xtreg}). For examining causal direction, the most popular approach has long been the cross-lagged panel model. In cross-lagged panel models, \(x\) and \(y\) at time \(t\) affect both \(x\) and \(y\) at time \(t+1\). Economists typically refer to such models as dynamic panel models because of the lagged effect of the dependent variable on itself.

\(^2\) Parts of this section borrow heavily from Allison et al. (2017). See that paper, which is freely available on the web (http://journals.sagepub.com/doi/suppl/10.1177/2378023117710578) for an extended discussion. Also, since the \texttt{xtdpdml} model is a special case of the \texttt{sem} model, the Stata manuals contain additional technical information.
Unfortunately, attempting to combine fixed effects models with cross-lagged panel models leads to serious estimation problems. The estimation difficulties include error terms that are correlated with predictors, the so-called “incidental parameters problem”, and uncertainties about the treatment of initial conditions (Allison et al, 2017; also see Wooldridge (2010), Baltagi (2013), or Hsiao (2014) for additional review of the extensive literature on dynamic panel data models).

The most popular econometric method for estimating dynamic panel models is the generalized method of moments (GMM) that relies on lagged variables as instruments. This method has been incorporated into several commercial software packages, usually under the name of Arellano-Bond (AB) estimators. For example, Stata has the built-in xtabond command and the user-written xtabond2 command.

While the AB approach provides consistent estimators of the coefficients, there is substantial evidence that the estimators are not fully efficient (Ahn and Schmidt 1995) and often perform poorly when the autoregressive parameter (the effect of a variable on itself at a later point in time) is near 1.0.

2.2. The Maximum Likelihood/Structural Equation Modeling Alternative. Moral-Benito (2013; Moral-Benito et al., in progress; also see Bai 2013) shows that maximum likelihood estimation can be accomplished in a way that eliminates the incidental parameters problem without the need for special assumptions about initial conditions. Moral-Benito uses two equations to specify his model. They are

\[
y_{it} = \gamma y_{i,t-1} + x_{it}' \beta + w_{it}' \delta + \alpha_i + \xi_t + \nu_{it} \quad (t = 1, \ldots, T)(i = 1, \ldots, N) \tag{1}
\]

where

- \(y_{it} \) is the value of \(y \) for individual \(i \) at time \(t \)
- \(y_{i0} \) is the initial observation of \(y_{it} \), treated as an exogenous variable
- \(x_{it} \) is a vector of sequentially exogenous/predetermined time-varying variables
- \(w_{it} \) is a vector of time-invariant, strictly exogenous variables
- \(\alpha_i \) is the unobservable time-invariant fixed effect
- \(\xi_t \) captures unobserved common factors across units in the panel
- \(\nu_{it} \) is the time-varying error term

and

\[
E(\nu_{it} \mid y_{i,t-1}^{t-1}, x_{i,t}', w_{it}, \alpha_i) = 0 \quad \forall i, t \tag{2}
\]

where \(x_{i,t}' \) denotes a vector of the observations accumulated up to \(t \). This implies, for example, that the disturbance for \(y_5 \) is uncorrelated with predetermined variable \(x \) at times 1-5, but could

\(^3\) Here and elsewhere we have slightly modified Moral-Benito’s notation to make it consistent with xtdpdlm’s.
be correlated with \(x \) at later times, e.g. \(x_6, x_7 \), etc. Put another way, the predetermined variable \(x \) could be affected by earlier values of the dependent variable. The meaning of each type of variable will become clearer as we proceed. Further details on the econometric specification and the resulting likelihood function are provided by Moral-Benito et al. (in progress).

Condition (2) is the only assumption required for consistency and asymptotic normality (under fixed \(T \) when \(N \) tends to infinity). Although Moral-Benito’s (2013) model does not explicitly include strictly exogenous time-varying predictors, such predictors are just a special case.

Allison et al. (2017) show that Moral-Benito’s method can be implemented with SEM software. The essential features of the ML-SEM method for cross-lagged panel models with fixed effects were previously described by Allison (2000, 2005a, 2005b, 2009), but his approach was largely pragmatic and computational. Moral-Benito provided a rigorous theoretical foundation for this method.

The justification for using SEM software rests on the fact that equations (1) and (2) are a special case of the linear structural equation model proposed by Jöreskog (1978) and generalized by Bentler and Weeks (1980). In its most general form, their model may be compactly specified as

\[
y = \mu + B y + \Gamma x
\]

where \(y \) is a \(p \times 1 \) vector of endogenous variables that may be either observed or latent, \(x \) is a \(k \times 1 \) vector of exogenous variables that, again, may be either observed or latent (including any disturbance terms in the model), \(\mu \) is a vector of intercepts, and \(B \) and \(\Gamma \) are matrices of coefficients. The endogenous vector \(y \) and any latent variables in \(x \) are assumed to have a multivariate normal distribution conditional on the observed exogenous variables. The \(B \) matrix has zeros on the main diagonal, and both \(B \) and \(\Gamma \) may have many additional restrictions. Most commonly, these restrictions take the form of setting certain parameters equal to 0, but there may also be equality restrictions. The remaining parameter \(\Theta \) is the variance matrix for \(x \), which usually has many elements set to 0.

Equations (1) and (2) are a special case of (3), in the following sense. Without loss of generality, we treat \(x_{it} \) and \(w_i \) as scalars rather than vectors. We then have, \(y' = (y_{i1}, \ldots, y_{iT}), x' = (\alpha_i, w_i, y_{i0}, x_{i1}, \ldots, x_{iT}, u_{i1}, \ldots, u_{iT}) \) and \(\mu' = (\xi_1, \ldots, \xi_T) \). For \(\Gamma \) we have

\[
\Gamma = \begin{bmatrix}
1 & \delta & \lambda & \beta & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\
1 & \delta & 0 & 0 & \beta & \cdots & 0 & 0 & 1 & \cdots & 0 \\
1 & \delta & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 & 0 & \ddots & 0 \\
1 & \delta & 0 & 0 & 0 & \cdots & \beta & 0 & 0 & \cdots & 1
\end{bmatrix}
\]

and for \(B \),
\[
B = \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 & 0 \\
\lambda & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & 0 & 0 & \lambda & 0 \\
\end{bmatrix}.
\]

For \(\Theta \), the following covariances are set to 0:
- \(\alpha \) with \(w \)
- \(\alpha \) with all \(\upsilon \)
- \(w \) with all \(\upsilon \)
- all \(\upsilon \) with each other
- \(x_{it} \) with \(\upsilon_{it} \) whenever \(s \geq t \)

All other elements of \(\Theta \) are left unrestricted. Note that \(\alpha \) is allowed to correlate with \(x \); and \(x \) is allowed to correlate with all prior realizations of \(\upsilon \), as a consequence of equation (2). The restriction that \(\text{cov}(\alpha, w) = 0 \), while perhaps undesirable, is essential for identification. That is, we must assume that the fixed effects are uncorrelated with any time-invariant variables.4

Figure 1 displays a path diagram of this model for the case in which \(T = 3 \), with no \(w \) variables.5 That is, we have only the \(y \) variables and the predetermined \(x \) variables. Notice that all the \(x \) variables are allowed to freely correlate with each other, as well as with \(y_0 \) which is treated like any other exogenous variable. Similarly, the latent variable \(\alpha \) (enclosed in a circle) is allowed to correlate with all the exogenous variables, including \(y_0 \). \(\alpha \) affects each \(y \) variable (with a coefficient of 1, not shown). The coefficients for the effects of the \(x \)'s on the \(y \)'s are constrained to be the same at all three time points, but this constraint can be easily relaxed.

4 For an alternative parameterization and a derivation of the likelihood function, see Moral-Benito et al. (in progress).
5 The path diagram in Figure 1 was produced by Mplus, version 7.4.
What makes x predetermined in this diagram are the correlations between ν_1 and both x_2 and x_3, and between ν_2 and x_3. If these correlations were omitted, x would be strictly exogenous rather than predetermined. Again, the rule is that, for any predetermined variable, x at time t is allowed to correlate with the error term for y at any prior time point.

How do the assumptions of ML-SEM differ from those of AB? ML-SEM makes stronger assumptions in three respects. First, and most importantly, ML-SEM assumes multivariate normality for all observed endogenous and exogenous variables while AB makes no distributional assumptions. However, ML-SEM produces consistent estimators even when the normality assumption is violated (Moral-Benito 2013). And if there is concern about normality, robust standard errors and other methods (see section 4.4) can be used for constructing confidence intervals and hypothesis tests. Second, in order to identify the effects of time-invariant variables, we introduced the assumption that $\text{cov}(\alpha, w) = 0$. But if you have any reason to doubt that assumption, you can just exclude time-invariant variables from the model. They will still be controlled as part of the α term. Lastly, ML-SEM makes use of the moment restrictions implied by the assumption that there is no serial correlation in the error terms in equation (1). Although the use of these restrictions was recommended by Ahn and Schmidt.

6 More specifically, the Stata 15 SEM manual (2017, p. 46) says that standard linear SEMs generally assume that the observed endogenous variables, the observed exogenous variables, the latent endogenous variables, and the latent exogenous variables have a joint normal distribution. We do not have latent endogenous variables in our models, but the error terms and Alpha are latent exogenous variables. Page 46 further clarifies that “although it is typical to assume joint normality of all variables when deriving the standard linear SEM, joint normality is not strictly necessary. The lesser assumption of joint normality conditional on the observed exogenous variables is sufficient. Even the normality assumption can be relaxed and replaced with i.i.d., and even the i.i.d. assumption can be relaxed.” Section 4.4 of this paper shows how the i.i.d assumption can be relaxed.
(1995) to improve efficiency, they have generally not been incorporated into AB estimation because they imply non-linear estimating equations.

On the other hand, ML-SEM makes it possible to relax many assumptions that are built into AB. Most notably, the default in `xtdpdml` is to allow for an unrestricted effect of time itself, and for different error variances at each time point. It is also possible to allow α, the latent variable for the individual effects, to have different coefficients at different time points. Also, as shown, a fixed-effects model is estimated. But by constraining the correlations between Alpha and the exogenous variables to be zero, it becomes a random effects model. Section 4 provides examples of how relaxing and imposing constraints greatly enhances the power and flexibility of the `xtdpdml` approach. Note that options which make it possible to impose or relax constraints do not fundamentally alter the underlying model; rather, they make it possible to estimate and test special cases of it.

Allison et al. (2017) and Moral-Benito (2013) claim that the SEM approach has several advantages over both GMM methods and previous ML methods: there is no “incidental parameters” problem; initial conditions are treated as completely exogenous and do not need to be modeled; no difficulties arise when the autoregressive parameter (the effect of lagged y on y) is at or near 1.0; missing data are easily handled by full-information maximum likelihood; coefficients can be estimated for time-invariant predictors (the standard AB method cannot do this because it uses difference scores which causes all time-invariant variables to drop out); and many model constraints can be easily relaxed and/or tested.

Further, it is well known that likelihood-based approaches (ML) are preferred to method-of-moments (GMM) counterparts in terms of finite-sample performance (see Anderson, Kunitomo, and Sawa 1982), and that ML is more efficient than GMM under normality. Moral-Benito (2013) compares the widely-used panel GMM estimator of Arellano-Bond (1991) with its likelihood-based counterpart and confirms these results in the case of dynamic panel models with predetermined regressors.

Both Allison et al (2017) and Moral-Benito et al. (in progress) ran several simulation studies to compare AB and ML-SEM under a wide variety of plausible conditions. In their examples, the ML approach generally works at least as well as AB and is often better. They find that ML-SEM produces approximately unbiased estimates under all the studied conditions; confidence interval coverage was excellent; for the autoregressive parameter, the downward bias in the AB estimator was much more substantial than ML-SEM and AB’s relative efficiency was also poorer. Further, the larger the autoregressive parameter was, the larger the AB bias. They also found that ML was less biased than AB when the disturbances were not normally distributed.

2.3. The Basic `xtdpdml` Command. To show specifically how the SEM approach can be used in Stata, Allison et al. (2017) reanalyzes data described by Cornwell and Rupert (1988) for 595 household heads who reported a non-zero wage in each of 7 years from 1976 to 1982. The variables are wks = number of weeks employed in each year; union $= 1$ if wage set by union contract, else 0, in each year; lwage $= \ln($wage$)$ in each year; and ed $= \text{years of education in}$ 1976. The model to be estimated is
\[wks_{it} = \lambda wks_{i,t-1} + \beta_2 lwage_{i,t-1} + \beta_3 union_{i,t-1} + \delta ed_i + \alpha_i + \xi_i + \nu_{it} \]

with union treated as predetermined, and lwage and ed treated as strictly exogenous. Here is the Stata `sem` code (Adapted from Allison et al, 2017):

```
use https://www3.nd.edu/~rwilliam/statafiles/wages, clear
keep wks lwage union ed id t
xtset id t
reshape wide wks lwage union, i(id) j(t)
sem (wks2 <- wks1@b1 lwage1@b2 union1@b3 ed@b4 Alpha@1 E2@1) ///
   (wks4 <- wks3@b1 lwage3@b2 union3@b3 ed@b4 Alpha@1 E4@1) ///
   (wks6 <- wks5@b1 lwage5@b2 union5@b3 ed@b4 Alpha@1 E6@1) ///
   (wks7 <- wks6@b1 lwage6@b2 union6@b3 ed@b4 Alpha@1), ///
   var(e.wks2@0 e.wks3@0 e.wks4@0 e.wks5@0 e.wks6@0) var(Alpha) ///
   cov(Alpha*(ed)@0) cov(Alpha*(E2 E3 E4 E5 E6)@0) ///
   cov(_OEx*(E2 E3 E4 E5 E6)@0) cov(E2*(E3 E4 E5 E6)@0) ///
   cov(E3*(E4 E5 E6)@0) cov(E4*(E5 E6)@0) cov(E5*(E6)@0) ///
   cov(union3*(E2)) cov(union4*(E2 E3)) cov(union5*(E2 E3 E4)) ///
   iterate(250) technique(nr 25 bhhh 25) noxconditional
```

We will explain the different components of the model in a moment, but even just glancing at the code underscores the difficulty of the task. For the SEM approach, data need to be in wide format; many/most dynamic panel data sets will be in long format. Coding is lengthy and error prone; there is a separate equation for each time period, there are many constraints across equations, and getting the covariance structure right is especially difficult. Output (not shown) is voluminous and highly repetitive because of the many equality constraints across time. Limitations of Stata make the coding less straightforward than we might like. Stata will not allow covariances between predetermined xs (to be defined shortly) and the y residuals. The `xtdpdml` command therefore fixes the variances of most of the y residuals at 0 (in effect, dropping them from the model) and creates new latent exogenous variables (E2, E3, etc.) which replace the residuals and which can be correlated with the predetermined xs.

`xtdpdml` avoids most of these problems. Here is equivalent coding using `xtdpdml` and the resulting output:

```
. use https://www3.nd.edu/~rwilliam statafiles/wages, clear
. xtset id t
    panel variable:  id (strongly balanced)
    time variable:  t, 1 to 7
         delta:  1 unit
```
. xtdpdml wks L lwage, inv(ed) pre(L.union)

Highlights: Dynamic Panel Data Model using ML for outcome variable wks

<table>
<thead>
<tr>
<th></th>
<th>OIM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wks</td>
</tr>
<tr>
<td></td>
<td>Coef. Std. Err. z P></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>wks</td>
<td></td>
</tr>
<tr>
<td>L1.</td>
<td>.1871266 .0201939 9.27 0.000 .1475473 .2267059</td>
</tr>
<tr>
<td>lwage</td>
<td></td>
</tr>
<tr>
<td>L1.</td>
<td>.6417917 .4842304 1.33 0.185 -.3072823 1.590866</td>
</tr>
<tr>
<td>union</td>
<td></td>
</tr>
<tr>
<td>L1.</td>
<td>-1.191349 .5168951 -2.30 0.021 -2.204445 -.1782536</td>
</tr>
<tr>
<td>ed</td>
<td>-.1122267 .0559477 -2.01 0.045 -.2218822 -.0025711</td>
</tr>
</tbody>
</table>

of units = 595. # of periods = 7. First dependent variable is from period 2.
Constants are free to vary across time periods
LR test of model vs. saturated: chi2(71) = 110.23, Prob > chi2 = 0.0020
IC Measures: BIC = 25470.43 AIC = 24772.64
Wald test of all coeff = 0: chi2(4) = 90.09, Prob > chi2 = 0.0000

One short command generates the equivalent of the 13 lines of sem code shown earlier. xtdpdml also temporarily reshaped the data to wide format.

Unless the user requests otherwise, only the most critical output is shown. By default, all variable coefficients (but not the constants or the error variances) are constrained to be equal across time. Therefore only the first equation (in this case for time 2) needs to be presented. The LR statistic provides an overall goodness of fit test. This tests all the constraints on the variances and covariances that are implied by the model. The BIC and AIC statistics (which could also be obtained via the estat ic command) are included in the output. (Note that these statistics could not be computed correctly if you were using a highlights-only file, described shortly). The Wald statistic tests the null hypothesis that all the variables in the model have coefficients of zero. In this case, where coefficients are constrained to be the same across all time periods, it produces the same results as the sem post-estimation command estat eqtest. When some coefficients are free to differ across time periods estat eqtest provides a test for each time period separately whereas xtdpdml tests all coefficients for all times simultaneously.

xtdpdml obviously provides a much simpler syntax. The reason it isn’t simpler still (and why the sem coding is so difficult) is that there are several possible types of independent variables in the model:

The lag 1 value of y (e.g. L1.wks) is included by default. This can be changed with the ylag option, e.g. ylag(1 2), ylag(2 4). Specifying ylag(0) excludes all lagged values of y.

Strictly exogenous time-varying predictors are those that (by assumption) are uncorrelated with the error terms at all points in time. These variables are listed immediately after the dependent variable, before the comma. Time series notation can be used, e.g. xtdpdml y L1.lwage L2.lwage would include the first and second lagged values of wages as independent variables.
Predetermined variables, also known as sequentially or weakly exogenous, are variables that might be affected by prior values of the dependent variables or are correlated with them for some other reason. In the current example, we allow for the possibility that weeks worked in one year can affect union status in later years. Predetermined variables are specified with the `pre` option. Mechanically, the residuals are allowed to correlate with the later-in-time values of the predetermined variables.

Time-invariant variables are variables whose values are constant across time, such as year born. In the current example, years of education does not vary across time. These variables are specified with the `inv` option. The ability to use time-invariant variables in the model is one of the advantages of the SEM approach over methods based on first differences like Arellano-Bond.

Also automatically included in each model is the latent exogenous variable α (which the `sem` code calls `Alpha`). Alpha represents the “fixed effects” that are common to all equations across time. Alpha can freely covary with all the time-varying observed exogeneous variables (both strictly exogenous and predetermined), but not with the time-invariant observed exogeneous variables. As Allison et al. (2017) say, “This is exactly what we want to achieve in order for Alpha to truly behave as a set of fixed effects”. To further clarify, Allison (2009, pp. 2-3) explains that

In a random effects model, the unobserved variables are assumed to be uncorrelated with (or, more strongly, statistically independent of) all the observed variables. In a fixed effects model, the unobserved variables are allowed to have any association whatever with the observed variables (which turns out to be equivalent to treating the unobserved variables as fixed parameters.) Unless you have controlled for such associations, you haven’t really controlled for the effects of the unobserved variables. This is what makes the fixed effects approach so attractive.

3. The `xtdpdml` command and syntax

The general syntax is

```
xtdpdml y [time-varying strictly exogeneous vars] [, inv(time-invariant exogenous vars) pre(predetermined vars) other_options]
```

Following is a description of the numerous program options.

Independent variables (other than strictly exogenous)

```
inv(varlist) Time-invariant exogenous variables, e.g. year of birth.
```

7 We consider predetermined variables to be exogenous because they are not dependent variables in any equation. Allowing variables to correlate does not necessarily mean that one is a cause of the other, e.g. they might be correlated because of some omitted common cause. Further, predetermined variables are labeled as exogenous in Stata’s `sem` output. But, other terminologies might label predetermined variables as endogenous if it is definitely believed that earlier values of the dependent variables are affecting later values of the independent variables.
predet(varlist) Predetermined variables, also known as sequentially exogenous. Predetermined variables can be affected by prior values of the dependent variable. Time series notation can be used.

ylag(numlist) By default the lag 1 value of y is included as an independent variable. Different or multiple lags can be specified, e.g. ylag(1 2) would include lags 1 and 2 of y. ylag(0) will cause no lagged value of y to be included in the model.

Dataset Options

wide By default, data are assumed to be xtset long with both time and panelid variables specified. The data set is temporarily converted to wide format for use with sem. If data are already in wide format use the wide option. However, note that the file must have been created by a reshape wide command or else it won't have information that xtdpdml needs. Use of this option is generally discouraged.

staywide will keep the data in wide format after running xtdpdml. This may be necessary if you want to use post-estimation commands like predict.

tfix Time should be coded t = 1, 2, ..., T where T = number of time points. By default, units like years (e.g. 1990, 1991, 1992) will cause errors or incorrect results. There will also be errors or incorrect results if delta does not equal 1, e.g. t = 1, 3, 5. The tfix option will recode time to equal 1, 2, ..., T and set delta = 1. You can still have problems though if delta was not specified correctly in the source data set or if interval width is not consistent. It is safest if you correctly code time yourself but tfix should work in most cases.

std standardizes all the variables in the model to have mean 0 and variance 1. It does this while the data set is in long format, hence the standardization does NOT differ by time period; e.g. at all time periods you might subtract 10 from a variable and divide by 7. By standardizing this way, the coefficients remain comparable across time. You probably will not want to use this option in most cases, but it can sometimes help when the model is having trouble converging.

std(varlist) standardizes only the selected variables to have mean 0 and variance 1. Do NOT use time series notation; just list the names of the variables you want standardized.

Model Specification and Constraints Options

evare is an alternative and usually less efficient but sometimes helpful way of specifying the error terms. As noted earlier, Stata will not allow covariances between predetermined xs and the y residuals. When there are predetermined variables, xtdpdml therefore drops most of the y residuals and replaces them with latent exogenous variables
(E2, E3, etc.) which can be correlated with predetermined variables. When there are no predetermined variables, this is not necessary and \texttt{xtdpdml} skips this step. Option \texttt{evars} causes this step to be done anyway which sometimes helps with convergence.

\texttt{alphafree} lets the coefficients of \texttt{Alpha} (fixed effects) differ across time. By default, they are all constrained to equal 1. Note that, if this option is used, \texttt{Alpha} will be normalized by fixing its variance at 1.

\texttt{xfree} lets the coefficients of all the independent variables (except lagged \(y\)) freely differ across time.

\texttt{xfree(varlist)} lets the coefficients of the specified independent variables freely differ across time.

\texttt{yfree} lets all lagged \(y\) coefficients freely differ across time.

\texttt{yfree(numlist)} allows the specified lagged \(y\) coefficients to freely differ across time.

\texttt{nocsd} (alias is \texttt{constinv}) Cross-sectional dependence is NOT allowed, i.e., constants are constrained to be equal across time periods. This is equivalent to no effect of time. This option sometimes causes convergence problems.

\texttt{errorinv} constrains error variances to be equal across waves. The default is to let them freely differ. This option may cause convergence problems.

\texttt{re} estimates the Random Effects Model (where \texttt{Alpha} is uncorrelated with all observed \texttt{Xs})

Reporting Options

\texttt{title(string)} Gives a title to the analysis. This title will appear in both the highlights results and (if requested) the Mplus code (described later). For example, \texttt{ti(Baseline Model)}

\texttt{details} will show all the output generated by the \texttt{sem} command. Otherwise only a highlights version is presented. This can be useful if you want to make sure the model specification is correct or if you want information not contained in the highlights. You can also replay all the results just by typing \texttt{sem} after running \texttt{xtdpdml}.

\texttt{showcmd} will show the \texttt{sem} command generated by \texttt{xtdpdml}. This can be useful to make sure the estimated model is what you wanted.
gof reports several goodness of fit measures after model estimation. It has the same effect as running the `sem postestimation command estat gof, stats(all)` after `xtdpdml`.

tsoff By default, when possible the highlights output produced by `xtdpdml` will use time-series notation similar to what you see with commands like `xtabond`, e.g. L3.xvar will represent the lag 3 value of xvar. Since the data are reshaped wide, this is not the same as the name of the variable that was actually used, e.g. it might be that L3.xvar corresponds to xvar2. `tsoff` will turn off the use of time series notation in the highlights printout and show the names of the variables actually used in the reshaped wide data.

display_options include `noci`, `nopvalues`, `noomitted`, `vsquish`, `noemptycells`, `cformat(%fmt)`, `pformat(%fmt)`, `sformat(%fmt)`, and `nolstretch`; see [R] estimation options.

`coeflegend` displays the names of the coefficients instead of the inferential statistics. This can be useful if, say, you are trying to use post-estimation test commands to test hypotheses about effects.

decimals(integer) specifies the number of decimal places to display for the coefficients, standard errors, and confidence limits. It is a shorthand way of specifying `cformat`, e.g. `dec(3)` is the same as specifying `cformat(%9.3f)`. You will get an error if you specify both `dec` and `cformat`. The value specified must range between 0 and 8; 3 is often a good choice for making the output easier to read.

Other Options

`mplus(filenamestub, mplus options)` will create inp and data files that can be used by Mplus (has only been tested with Mplus 7.4). This is adapted (with permission) from UCLA's and Michael Mitchell's `stata2mplus` command but does not require that it be installed. The filenamestub must be specified; it will be used to name the Mplus .inp and .dat files. Everything else is optional. Options `replace`, `missing(#)`, `analysis`, and `output` are supported. `replace` will cause existing .inp and .dat files to be overwritten. `missing` specifies the missing value for all variables; default is -9999. `analysis` and `output` specify options to be passed to the Mplus analysis and output options. As is the case in Mplus, multiple analysis and output options should be separated by semicolons. `xtdpdml` cannot check your Mplus syntax so be careful. As with Stata, the generated Mplus code will specify listwise deletion unless you have also used the `fiml` option. The Mplus option, of course, requires that you have Mplus and know how to use it. Since that will not be true of many/most Stata users, those interested in the option should consult the help file and examples provided on the support page for `xtdpdml` for additional details.
lavaan(filenamestub, r) creates R commands and Stata dta files that can be used by R's lavaan package. The filenamestub must be specified; it will be used to name the lavaan .R and .dta files. replace will cause existing .R and .dta files by those names to be overwritten. You of course need to have R installed and know how to use it. You may want to edit the generated code if you want to change or add options. So, for example, if the user specified lav(myfile, r) lav_myfile.R and lav_myfile.dta would be created (replacing any existing files by those names). R is free and sometimes executes more quickly than Stata (but not as quickly as Mplus) which may make this a useful option for those who like to use R.

semfile(filename, r) The generated sem commands will be output to a file called filename.do. The r option can be specified to replace an existing do file by that name. This is useful if you want to try to modify the sem commands in ways that are not easily done with xtdpdml. You may wish to also specify the staywide option so that data remain correctly formatted for use with the generated do file.

store(stubname) - xtdpdml generates two sets of results: the full results, generated by sem, and a highlights-only set of results which can be used with programs like esttab. The stored results have the names stubname_f and stubname_h, e.g. if you specify store(model1) the results will be stored as model1_f and model1_h. The default stubname is xtdpdml, so after running xtdpdml without the store option you should have stored results xtdpdml_f and xtdpdml_h. You should not try to do most post-estimation commands with the highlights version (e.g. predict, margins) because necessary information may not be stored in the file; use the full version instead.

dryrun will keep sem from actually being executed. This will catch some errors immediately and can be useful if you want to see the sem command that is generated and/or wish to specify staywide to reformat the data from long to wide. This will often be combined with the showcmd, mplus, semfile, lavaan, or staywide options.

iterate(#) specifies the maximum number of iterations allowed. The current default (subject to change) is 250. You can increase this number and/or change the maximization technique if the model is having trouble converging.

technique(methods) specifies the maximization techniques used. The current default (subject to change) is technique(nr 25 bhhh 25). You can change this if the model is having trouble converging. If you use method(adf) (asymptotic distribution free) the default technique is set to technique(nr 25 bfgs 10) since adf and the bhhh technique do not seem to work together. See help maximize for details as well as for information on other options that can be used, e.g. difficult.

semopts(options) Other options allowed by sem will be included in the generated sem command.
fiml causes full information maximum likelihood to be used for missing data. This is the equivalent of specifying method(mlmv) on the sem command. fiml sometimes dramatically slows down execution so be patient if you use it.8

skipcfatransform and skipconditional – Stata 14.2 changed the way starting values are computed by sem. When used together, skipcfatransform and skipconditional cause Stata to compute starting values the same way as it did before Stata 14.2. Usually the new procedures work better, especially when fiml is used, but sometimes the old start values speed up execution and/or are better for getting models to converge. These options are ignored in Stata 14.1 or earlier.

altstart is a convenient way to specify both skipcfatransform and skipconditional.

method(method) specifies estimation methods supported by sem, e.g. ml, mlmv, adf. You probably will not use this option unless you want to specify method(adf). Remember that method(ml) (maximum likelihood) is the default and that fiml is a shorthand way of specifying method(mlmv) (maximum likelihood with missing values, aka full information maximum likelihood). If you use method(adf) (asymptotic distribution free) the default technique is set to technique(nr 25 bfgs 10) since adf and the bhhh technique do not seem to work together.

vce(vcetype) specifies vcetypes supported by sem, e.g. oim, robust. Not all vcetypes have been tested with xtdpdml so we recommend caution if using this option.

v12 The xtdpdml command was written and tested using Stata 13, 14, and 15. The v12 option will also allow it to run under Stata 12.1. This has not been extensively tested so use at your own risk.

4. Examples

We have already provided one example that illustrates the key features of xtdpdml. For many purposes, that one example may be enough. Here, we illustrate additional capabilities of xtdpdml that will often be useful. With many of the examples, we will contrast the abilities of the ML/xtdpdml approach with those of the popular Arellano-Bond/xtabond method. Specifically, our examples will illustrate xtdpdml’s capabilities to (1) use FIML to better estimate models with missing data; (2) use Goodness of Fit Measures to improve model specification; (3) compare and contrast fixed versus random effects, using likelihood ratio tests

8 As the Stata 15 SEM manual explains (p. 574), when method(mlmv) is specified, sem groups the data according to missing-value patterns. Each missing-value pattern will have its own summary data. The log likelihood for a missing value pattern is computed using this summary data. The overall log likelihood is computed by summing the log-likelihood values from each missing-value pattern. This process can be extremely time consuming and can have problems producing solutions when there are a large number of missing data patterns and/or when some missing data patterns have very few cases. For an extended discussion of FIML, see Newman (2003), Finkbeiner (1979), and Enders & Bandalos (2001).
that avoid many of the problems that can occur with Hausman tests; and (4) estimate models with non-normally distributed data. Other important features of xtdpdml, such as its ability to estimate the effects of time-invariant variables in a fixed effects model, will also be shown.

All of the examples are adapted from Bollen and Brand (2010). They examine data from the National Longitudinal Survey of Youth. Respondents were 14 to 22 years old when first interviewed in 1979, and were interviewed annually or bi-annually for several years thereafter. Bollen and Brand originally analyzed data from the years 1983-1993 at two-year intervals. The dependent variable (lnwg) is log hourly wages in current job. The main independent variable (hchild) is total number of children the respondent had at the time of the interview. Other variables in the model include whether or not married (mar) or divorced (div); educational attainment (eduatt); currently in school (cursc); several measures of part-time and full-time work experience (snrpt, snrft, exppt and expft); and breaks in employment history (break). See Bollen and Brand for more details on the variables and sample selection.

4.1 Missing Data. We have previously noted that several simulations demonstrate the superiority of ML over AB in a variety of situations. Of course, real data often offer complications that are not present in simulations. The Bollen-Brand data set is strongly balanced, but many cases have missing data on one or more variables. Also, the model is a fixed effects model but includes time invariant variables.

Here we compare the results from xtdpdml and xtabond. First we give the code and then excerpts from the output.

*** Section 4.1 -- Comparisons with AB, real data, using fiml and listwise
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500
xtabond lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break black hisp
estimates store gmm
* FIML
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
constinv errorinv fiml tfix store(fiml) ///
inv(black hisp) ti(Adapted from Bollen & Brand Social Forces 2010)
* Listwise
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
constinv errorinv tfix store(normal) ///
inv(black hisp) gof

Both xtabond and xtdpdml require that the data first be xtset. But this data set was previously saved after invoking the command xtset id year, so there is no need to repeat the command for any of the examples shown here.

For xtdpdml, the options constinv and errorinv were used to ensure comparibility with xtabond, which presumes constant intercepts and constant variance by default. However, in most applications, these constraints would be both unnecessary and undesirable. tfix is necessary because the year variable starts at 83 and increments by 2 for each period. The output includes:
. xtabond lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break black hisp

note: black dropped from div() because of collinearity
note: hisp dropped from div() because of collinearity

Arellano-Bond dynamic panel-data estimation

Number of obs = 8,915
Group variable: id
Number of groups = 3,488
Time variable: year

Obs per group:
min = 1
avg = 2.555906
max = 4

Number of instruments = 21

Wald chi2(11) = 3315.32
Prob > chi2 = 0.0000

One-step results

| Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-----------|------|-------|---------------------|
| lnwg | | | | |
| L1. | -.0072789 | .0402023 | -0.18 | 0.856 | -.086074 -.0715163 |
| hchild| -.0091342 | .0090602 | -1.01 | 0.313 | -.0268919 .0086236 |
| marr | .0468352 | .0168387 | 2.78 | 0.005 | .0138321 .0798384 |
| div | .0747365 | .0225606 | 3.31 | 0.001 | .0305184 .1189545 |
| eduatt| .0575892 | .0102432 | 5.62 | 0.000 | .0375128 .0776656 |
| cursc | -.081103 | .0153101 | -5.30 | 0.000 | -.1111103 -.0510956 |
| snrpt | .0132922 | .0054544 | 2.44 | 0.015 | .0026018 .0239826 |
| snrft | .0140817 | .0070540 | 5.21 | 0.000 | .0087792 .0193842 |
| exppt | .056597 | .0055597 | 10.18 | 0.000 | .0457002 .0674937 |
| expft | .0608082 | .0064356 | 13.12 | 0.000 | .0517219 .0698946 |
| break | .0200741 | .0069791 | 2.88 | 0.004 | .0063953 .0337528 |
| black | 0 (omitted) | | | | |
| hisp | 0 (omitted) | | | | |
| _cons | .6280031 | .1360759 | 4.62 | 0.000 | .3612993 .894707 |

Instruments for differenced equation

GMM-type: L(2/.) lnwg

Instruments for level equation
Standard: _cons
. xtdpdl lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break, \///
> constinv errorinv fiml tfix store(fiml) \///
> inv(black hisp) ti(Adapted from Bollen & Brand Social Forces 2010)

Highlights: Adapted from Bollen & Brand Social Forces 2010

<table>
<thead>
<tr>
<th>OIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnl</td>
</tr>
</tbody>
</table>

| lnwg | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|-------|-------|-----------|-----|------|----------------------|
| lnwg | .3378925 | .0124879 | 27.06 | 0.000 | .3134166 | .3623684 |
| L1 | .0617287 | .017081 | 3.61 | 0.000 | .0282505 | .095207 |
| hchild | -.0209521 | .0063606 | -3.29 | 0.001 | -.0334186 | -.0084856 |
| marr | .0359839 | .012841 | 2.80 | 0.005 | .0108161 | .0611517 |
| div | .0617287 | .017081 | 3.61 | 0.000 | .0282505 | .095207 |
| eduatt | .0583252 | .0072068 | 8.09 | 0.000 | .0442001 | .0724503 |
| cursc | -.1075845 | .013218 | -8.14 | 0.000 | -.1334988 | -.0816701 |
| snrpt | .0088462 | .0043731 | 2.02 | 0.043 | .002751 | .0174173 |
| snrft | .0174143 | .0021041 | 8.28 | 0.000 | .0132904 | .0215383 |
| exppt | .0380717 | .0037348 | 8.27 | 0.000 | .0235517 | .0531917 |
| expft | .0307015 | .0022474 | 13.66 | 0.000 | .0262966 | .0351064 |
| break | .0373066 | .012675 | 5.76 | 0.000 | .0482236 | .0979086 |
| black | -.0074612 | .012675 | 0.60 | 0.547 | -.0265156 | .0115926 |
| hisp | .0730661 | .012675 | 5.76 | 0.000 | .050106 | .095926 |

of units = 5285. # of periods = 6. First dependent variable is from period 2.

The results are strikingly different. Almost 21,000 records have data on at least one variable in the model, and all of these observations are used by xtdpdl(with the fiml option). However, only 8,915 records are used by xtabond because it deletes any record with missing data. Perhaps for this reason, xtabond produces a highly implausible estimate of almost zero effect of lagged wages on current wages and also says that the effect of the main independent variable, number of children, is statistically insignificant. In the xtdpdl results, both effects are highly significant and the signs of the effects are in the expected direction. Many other variables have larger z-statistics in xtdpdl than they do in xtabond. xtabond cannot estimate effects for the time-invariant variables black and hisp. xtdpdl can, and shows that the effect of hisp is highly significant.

Even if we leave out the fiml option, thereby deleting all persons who have missing data at any time point, the results from xtdpdl seem somewhat more plausible.
As we would expect, with listwise deletion the smaller sample size causes effects to be less statistically significant. But, the effect of lagged wages continues to be positive and highly significant.

In fairness, xtdpdml took far longer to run than did xtabond, especially when FIML was used. Further, there will be other situations where the two methods will yield more similar results; and, when panels are far from being strongly balanced, xtabond may work better (or xtdpdml may not work at all). But, at least in this particular case, where many cases have missing data and time-invariant variables are in the model, xtdpdml seems to be the better alternative.

4.2. Panel Model with Fixed Effects; Goodness of Fit measures. Bollen and Brand (2010) present a series of Panel Models with Random and Fixed Effects. They used Mplus for the analysis; but now, many of their models can be more easily estimated with xtdpdml (hand tweaking of the sem code may be required in a few cases). In this relatively simple example, there are no lagged independent variables. With a strongly balanced panel, no missing data and no effect of lagged y, xtdpdml produces results that are almost identical to xtabond. Of course, there is missing data with this data set, making the use of xtdpdml with FIML desirable.

Here we present the fixed effects model 2 from their Table 3. We also include the gof option, which includes several goodness of fit measures in the output.
* Bollen & Brand Social Forces 2010 Fixed Effects Table 3 Model 2 p. 15
use https://www3.nd.edu/~rwilliam statafiles/bollenbrand, clear
(Bollen & Brand 2010 Social Forces V 89(1) NLSY 1983-1993 Odd years Long format).

xtdpdml lnwg hchild marr div, ylag(0) fiml tfix errorinv gof sto(baseline)

Highlights: Dynamic Panel Data Model using ML for outcome variable lnwg

<table>
<thead>
<tr>
<th></th>
<th>OIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnwg</td>
<td>Coef.</td>
</tr>
<tr>
<td>lnwg</td>
<td></td>
</tr>
<tr>
<td>hchild</td>
<td>-.0704949</td>
</tr>
<tr>
<td>marr</td>
<td>.0826099</td>
</tr>
<tr>
<td>div</td>
<td>.0572981</td>
</tr>
</tbody>
</table>

of units = 5231. # of periods = 6. First dependent variable is from period 1.
Constants are free to vary across time periods
LR test of model vs. saturated: $\chi^2(106) = 1940.93$, Prob > $\chi^2 = 0.0000$
IC Measures: $BIC = 73683.21$ $AIC = 72252.61$
Wald test of all coeff = 0: $\chi^2(3) = 204.34$, Prob > $\chi^2 = 0.0000$

Fit statistic	Value	Description
Likelihood ratio |
$\chi^2_{ms}(106)$ | 1940.932 | model vs. saturated
$p > \chi^2$ | 0.000 |
$\chi^2_{bs}(123)$ | 8307.362 | baseline vs. saturated
$p > \chi^2$ | 0.000 |
Population error |
RMSEA | 0.058 | Root mean squared error of approximation
90% CI, lower bound | 0.055 |
upper bound | 0.060 |
pclose | 0.000 | Probability RMSEA <= 0.05
Baseline comparison |
CFI | 0.776 | Comparative fit index
TLI | 0.740 | Tucker-Lewis index

[Some GOF output deleted]

See Acock (2013) for a discussion of goodness of fit measures in SEM. The “model vs.
saturated” chi-square is a test of all 106 over-identifying restrictions implied by the model. Here
the chi-square (1940.93) is almost 20 times its degrees of freedom, suggesting a poor fit to the
data. However, as is well known, it is difficult to find any reasonably parsimonious model that
will pass this test with a sample size of more than 5,000. Other GOF tests reported here are less
sensitive to sample size. An RMSEA of less than .05 is considered to be a good fit, and we are
almost there at .058. On the other hand, both the CLI and TLI are well below .90, the usual
standard for a minimally acceptable model.

To improve the model fit we could consider relaxing some of the constraints of the model, e.g.,
we could let the effects of some variables vary across time by using the `xfree` or `yfree`
options. Modification indices (obtained with the `sem postestimation command estat
mindices`) could provide additional guidance on how to modify the model. Because there are
so many equality constraints imposed by the model, the `estat scoretests` command may
be especially useful, because it displays score tests (Lagrangian multiplier tests) for each of the linear constraints that are imposed on the model. In this case,

```stata
'estat scoretests
Score tests for linear constraints

( 1)  [lnwg1]hchild1 - [lnwg6]hchild6 = 0
( 2)  [lnwg1]marr1 - [lnwg6]marr6 = 0
( 3)  [lnwg1]div1 - [lnwg6]div6 = 0
( 4)  [lnwg1]Alpha = 1
( 5)  [lnwg2]hchild2 - [lnwg6]hchild6 = 0
( 6)  [lnwg2]marr2 - [lnwg6]marr6 = 0
( 7)  [lnwg2]div2 - [lnwg6]div6 = 0
( 8)  [lnwg2]Alpha = 1
(12)  [lnwg3]Alpha = 1
(13)  [lnwg4]hchild4 - [lnwg6]hchild6 = 0
(15)  [lnwg4]div4 - [lnwg6]div6 = 0
(16)  [lnwg4]Alpha = 1
(17)  [lnwg5]hchild5 - [lnwg6]hchild6 = 0
(20)  [lnwg5]Alpha = 1
(21)  [lnwg6]Alpha = 1
(22)  [var(e.lnwg1)]_cons - [var(e.lnwg6)]_cons = 0
(23)  [var(e.lnwg2)]_cons - [var(e.lnwg6)]_cons = 0
(24)  [var(e.lnwg3)]_cons - [var(e.lnwg6)]_cons = 0
|      chi2     df  P>chi2
-------------+-------------------------
( 1) |   54.652      1    0.00
( 2) |   17.970      1    0.00
( 3) |    4.194      1    0.04
( 4) |   543.286      1    0.00
( 5) |   15.011      1    0.00
( 6) |    5.726      1    0.02
( 7) |    8.885      1    0.00
( 8) |   91.101      1    0.00
(12) |    5.594      1    0.02
(13) |    5.866      1    0.02
(15) |    4.213      1    0.04
(16) |   98.223      1    0.00
(17) |    4.062      1    0.04
(20) |  100.611      1    0.00
(21) |  134.406      1    0.00
(22) |   12.887      1    0.00
(23) |   20.007      1    0.00
(24) |   20.581      1    0.00
-------------
```

The results strongly suggest that the Alpha coefficients (i.e., the coefficients for the unmeasured fixed effects--see tests 4, 8, 12, 16, 20 and 21) are not the same across time (by default, all are set equal to 1). The constraint that the error variances are the same across time (which was imposed by the errorinv option but is inherent in the AB approach)) also seems dubious (see tests 22, 23, and 24). Luckily, unlike AB, both problems are easily addressed with ML-SEM. As Allison et al. (2017) note, “It’s even possible to allow the coefficient of α, the fixed effect, to vary with time instead of being constrained to 1 for every time point. This option is attractive because it removes one of the principal limitations of the classic fixed effects estimator: that it does not control for unmeasured time-invariant variables when their effects change over time.”
We therefore relax those constraints by dropping the `errorinv` option and adding `alphafree`, resulting in

```
xtdpdm  lnwg hchild marr div, ylag(0) fiml tfix alphafree gof sto(modified)
```

. `lrtest baseline_f modified_f, stats`

[Some output deleted]

```
----------------------------------------------------------------------------
Fit statistic        |      Value   Description
---------------------+------------------------------------------------------
Likelihood ratio     |
  chi2_ms(96) |    789.252   model vs. saturated
  p > chi2 |      0.000
  chi2_bs(123) |   8307.362   baseline vs. saturated
  p > chi2 |      0.000
---------------------+------------------------------------------------------
Population error     |
  RMSEA |      0.037   Root mean squared error of approximation
  90% CI, lower bound |      0.035
  upper bound |      0.040
  pclose |      1.000   Probability RMSEA <= 0.05
---------------------+------------------------------------------------------
Baseline comparison  |
  CFI |      0.915   Comparative fit index
  TLI |      0.891   Tucker-Lewis index
----------------------------------------------------------------------------
```

Likelihood-ratio test LR chi2(10) = 1151.68
(Assumption: baseline_f nested in modified_f) Prob > chi2 = 0.0000

Akaike's information criterion and Bayesian information criterion

```
<table>
<thead>
<tr>
<th>Model</th>
<th>Obs</th>
<th>ll(null)</th>
<th>ll(model)</th>
<th>df</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline_f</td>
<td>5,231</td>
<td>-35908.31</td>
<td>72252.61</td>
<td>218</td>
<td>73683.21</td>
<td></td>
</tr>
<tr>
<td>modified_f</td>
<td>5,231</td>
<td>-35332.47</td>
<td>71120.93</td>
<td>228</td>
<td>72617.15</td>
<td></td>
</tr>
</tbody>
</table>
```

Note: N=Obs used in calculating BIC; see [R] BIC note.

Relaxing the constraints on Alpha and the error variances requires only 10 degrees of freedom (because equality constraints are relaxed on 5 Alpha coefficients and 5 error variances) and produces a dramatic improvement in model fit. The BIC and AIC statistics also strongly favor the less constrained model. There are also clear improvements in other goodness of fit measures. RMSEA = .037, much better than the .05 value that is considered a good fit. Similarly CLI = .891 and TLI = .915, close to or better than the usual standard of .90 for a minimally acceptable model.

Of course the researcher may also want to reconsider whether other model assumptions (such as not including any lagged independent variables, especially lagged \(y \)) are justified.

4.3 Fixed Effects Versus Random Effects Models; An Alternative to the Hausman Test. Allison (2009) notes that a Hausman test is often used to contrast fixed effects and random effects models. He notes, however, that the Hausman test can sometimes be problematic, e.g., it can produce negative values for some data configurations. He argues that a likelihood ratio test
can have superior statistical properties. To illustrate this, we again estimate a fixed effects model with the Bollen and Brand data. Estimating a random effects model instead requires only that we add the `re` option to `xtdpdml`. By default, Alpha, the latent variable representing fixed effects, is allowed to correlate with all the time-varying exogenous variables, including y_0. In the random effects model these correlations are constrained to zero. After estimating both models, the `lrtest` command can be used to contrast the results. The code is

```stata
*** 4.3 Fixed Effects vs Random Effects Models; Alternative to the Hausman Test
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500

* Random effects
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
   constinv errorinv fiml tfix re store(re) ///
   inv(black hisp) ti(Adapted from Bollen & Brand Social Forces 2010)

* Fixed effects
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
   constinv errorinv fiml tfix store(fe) ///
   inv(black hisp) ti(Adapted from Bollen & Brand Social Forces 2010)

esttab re_h fe_h , mtitles(Random Fixed) scalar(chi2_ms df_ms p_ms BIC AIC ) z
lrtest re_f fe_f, stats
```

As noted before in section 3, when the `store` option is used, two versions of the results are stored. In this case, the highlights-only results are stored in `re_h` and `fe_h`. These can be used with the user-written command `esttab` to display key results in tables. The full results are stored in `re_f` and `fe_f`. These should be used with `lrtest` to test whether the differences between the two models are significant. Showing just the post-estimation output,
```
. esttab re_h fe_h , mtitles(Random Fixed) scalar(chi2_ms df_ms p_ms BIC AIC ) z

--------------------------------------------
(1)             (2)
Random           Fixed
--------------------------------------------
lnwg             L.lnwg        0.393***  0.338***  
                 (31.49)        (27.06)
hchild           0.0116***  -0.0210***  
                 (-3.45)        (-3.29)
marr             0.00774    0.0360**   
                 (0.95)         (2.80)
div              0.0323**  0.0617***  
                 (3.08)         (3.61)
eduatt           0.0547***  0.0583***  
                 (28.13)        (8.09)
cursc            0.0952***  0.108***   
                 (-8.27)        (-8.14)
snrpt            0.00721*  0.00885*   
                 (2.18)         (2.02)
snrft            0.0160***  0.0174***  
                 (10.24)        (8.28)
exppt            0.0195***  0.0309***  
                 (10.34)        (8.27)
expft            0.0300***  0.0307***  
                 (19.54)        (13.66)
break            0.00380*  0.0371***  
                 (2.11)         (8.56)
black            0.0227**  -0.00746   
                 (-2.62)        (-0.72)
hihp             0.0570***  0.0731***  
                 (5.68)         (5.76)
--------------------------------------------
N                 5285        5285
chi2_ms          1375.9     831.0
df_ms            269        218
p_ms             7.79e-148  2.28e-72
BIC              345222.9   345115.2
AIC              335363.9   334921.0
--------------------------------------------
z statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001
```
The likelihood ratio test, and the BIC and AIC statistics, all favor the fixed effects model\(^9\). This suggests that at least some important variables that are correlated with the time-varying predictors have been omitted from the model. Note that, with more conventional fixed effects methods, the effects of time-invariant variables (of which there are several in this case) cannot be estimated. This is not the case with the \texttt{xtdpdml} approach.

4.4 Non-Normality

By default, the \texttt{xtdpdml} model assumes that observed endogenous variables have a multivariate normal distribution, conditional on the exogenous variables. If FIML is used, the multivariate normal assumption also applies to any exogenous variables with missing data. When the normality assumption holds, maximum likelihood is asymptotically efficient, implying that the true standard errors are as small as possible.

What if the normality assumption is violated? Even under non-normality, ML is consistent and asymptotically normal (Moral-Benito 2013). But it will not be efficient, and the reported standard errors will not be consistent estimates of the true standard errors, leading to incorrect \(p\)-values and confidence intervals. The degree of bias depends on the circumstances. Simulations by Moral-Benito et al. (in progress) and by Allison et al. (2017) show that under non-normal data generating processes, the ML estimator performs quite well in finite samples, both in comparison with its performance under normal data terms and with GMM for non-normal data.

When the normality assumption is possibly problematic, the \texttt{sem} command (and hence \texttt{xtdpdml}) provides various ways of adjusting standard errors, test statistics, and the parameter estimates themselves. This section will explain three of the approaches and some of the advantages and disadvantages of each.

First, with Stata 14 and later, the \texttt{vce(sbentler)} option can be specified. As Stata Corp explains on its web pages (2017a),

\[
\text{Stata's linear sem provides the Satorra–Bentler scaled chi-squared test for model goodness of fit versus the saturated model. Why do you care? The likelihood-ratio test comparing your estimated model to the saturated model is derived under the assumption that the observed variables in your...}
\]

\(^9\) The random effects model imposes constraints on 51 correlations between Alpha and the exogenous variables that are free to vary in the fixed effects model. There are 10 time-varying variables for each of 5 time periods, so their 50 correlations with Alpha are set to 0. The correlation between Alpha and lnwg at time 1 is also constrained to equal 0.
model are normally distributed. If they are not, that test is not appropriate. The Satorra–Bentler
scaled chi-squared test is robust to nonnormality. Because many other goodness-of-fit statistics are
derived from the model using the chi-squared test, they too become robust to nonnormality.
[What’s more] The same adjustment that gives you the Satorra–Bentler scaled chi-squared test
makes a host of other things robust to nonnormality: standard errors, p-values, and confidence
intervals reported by sem and standard errors, p-values, and confidence intervals for most posthoc
comparisons and tests, including joint tests, nonlinear tests, linear and nonlinear expressions of
parameters, estimated marginal means and marginal effects, equation-level Wald tests, direct and
indirect effects, and tests of standardized parameters.

Note that \texttt{vce(sbentler)} relaxes the normality assumption when estimating standard errors
but does NOT affect the coefficient estimates, i.e., regardless of whether you specify
\texttt{vce(sbentler)} or not the coefficient estimates will be the same.

Unfortunately, a key limitation of the \texttt{vce(sbentler)} option is that it does NOT work with
full-information maximum likelihood, i.e., it requires listwise deletion. If missing data is a
concern, researchers may prefer to use a different option, \texttt{vce(robust)}. As Stata Corp
(2017a) also points out in the same on-line document,

Stata's \texttt{sem} already had an adjustment that makes everything in “What's more” true. It is often
called the Huber or White method, or just called the linearized estimator. Whatever you call it, this
estimator and the Satorra–Bentler adjustment are making your inferences robust to similar things.
They are derived and computed differently, so they produce different estimates. As samples
become very large, however, they converge to the same estimates.

When \texttt{vce(robust)} is specified, along with the default Maximum Likelihood estimation
method, Stata calls the estimation method quasi-maximum likelihood (QML). Like
\texttt{vce(sbentler)}, QML relaxes the normality assumption when estimating standard errors but
does not affect the coefficient estimates, i.e., regardless of whether you specify \texttt{vce(robust)}
or not the coefficient estimates will be the same.

A key advantage of \texttt{vce(robust)} is that, unlike \texttt{vce(sbentler)}, it can be used with
FIML, i.e., it does NOT require listwise deletion of missing data. Since the standard errors from
\texttt{vce(robust)} and \texttt{vce(sbentler)} are asymptotically equivalent, \texttt{vce(robust)} may be
preferred when missing data are a concern. However, unlike \texttt{vce(sbentler)},
\texttt{vce(robust)} does not provide many goodness of fit measures, e.g., no overall chi-square, no
RMSEA, no TLI or CFI.

With both \texttt{vce(robust)} and \texttt{vce(sbentler)}, the standard errors change but the
coefficient estimates remain the same. A third approach is the asymptotic distribution free (ADF)
estimation method (also known as weighted least squares in some literature), which is achieved
by specifying the option \texttt{method(adf)}. As the Stata 15 SEM manual (2017b, pp. 47-48)
explains,

ADF makes no assumption of joint normality or even symmetry, whether for observed or latent
variables…. ADF produces justifiable point estimates and standard errors under nonnormality…
Be aware, however, that ADF is less efficient than ML when latent variables can be assumed to be
normally distributed. If latent variables (including errors) are not normally distributed, on the other
hand, ADF will produce more efficient estimates than ML or QML.
Like `vce(sbentler)`, ADF requires listwise deletion of missing data, which could be a major disadvantage in some cases. Also, ADF typically requires large samples to work effectively. Our own very limited tests suggest that models using ADF are harder to estimate and more likely to have convergence problems.

For the sake of brevity, we will only present the Stata code (with comments) for each of these approaches and not the output. As just explained, coefficient estimates are the same as for the models presented in Section 4.1 (either using listwise deletion or FIML) but the standard errors and/or fit statistics are different. The one exception is with method ADF, which should produce different coefficient estimates, but the models could not converge to a solution in this case.\(^{10}\)

```stata
*4.4 Non-Normality
use https://www3.nd.edu/~rwilliam/statafiles/bollenbrand, clear
set matsize 7500
* Use vce(sbentler). Coefficients are the same as when listwise is used
* Standard errors and GOF measures change
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(sbentler) vce(sbentler) ///
  inv(black hisp) gof

* vce(sbentler) does NOT work with fiml
capture noisily xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(sbentler) vce(sbentler) ///
  inv(black hisp) gof fiml
* Produces the error message "vce(sbentler) not allowed with method(mlmv)"

* Now use vce(robust).
* Coefficients stay the same as when listwise is used but standard errors change.
* In these particular examples vce(sbentler) and vce(robust) produce very
* similar estimates of the standard errors.
* But, few GOF measures are reported with vce(robust).
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(robust) ///
  inv(black hisp) vce(robust) gof

* vce(robust) does work with fiml
* Coefficients are the same as in example 4.1 using FIML but standard errors differ
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(robustfiml) ///
  inv(black hisp) vce(robust) gof fiml

* Now use method(adf). Both coefficients and standard errors change.
* But, won't converge for this example
xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(adf) ///
  inv(black hisp) method(adf) gof

* Also fiml will NOT work with adf
capture noisily xtdpdml lnwg hchild marr div eduatt cursc snrpt snrft exppt expft break , ///
  constinv errorinv tfix store(adf2) ///
  inv(black hisp) method(adf) gof fiml
* Produces the error message "You cannot specify both fiml and method(adf)"

\(^{10}\) Mplus was also unable to converge to a solution using ADF (which Mplus calls WLS), which suggests that this is not a problem specific to Stata.
```
5. Special Topics

The xtdpdml approach requires that some problems be approached differently than they are with other models. In addition, for some applications, xtdpdml models can be harder to estimate and may consume far more computing time than other approaches. In this section we discuss various ways to deal with these issues.

5.1 Interactions with Time

Researchers sometimes want constants and coefficients to differ across time. xtdpdml can do this but, because data are reshaped wide, the procedure is different than it is with other programs.

By default, xtdpdml allows the constants (intercepts) to differ across time periods. With other xt commands this would be like including i.time in the model. The constinv or nocsd options can be specified if the user wants the constants to be invariant across time. Note that these options will sometimes cause convergence problems.

In other situations the user might want interactions with time where the coefficient of a variable is free to differ across time periods. With other commands this might be accomplished by specifying something like i.time#c.ses. With xtdpm you use the free options instead, e.g., xfree(ses) will allow the effect of ses to differ at each time period. Similarly, alphafree might be used to allow the fixed effects to differ across time periods, something which is generally not possible with other methods.

5.2 Speed, Convergence, and Missing Data Problems

xtdpdml sometimes has trouble converging to a solution or else is extremely slow in doing so. This might occur, for example, when time-varying variables do not vary that much across time, creating problems of collinearity in estimation. Here are some things you can try when that happens.

Stata 14.2 introduced major enhancements to the sem command that dramatically helped with both convergence and speed, especially when FIML is used. Try to use 14.2 or later when using xtdpdml.

By default, sem deletes cases on a listwise basis. Because data are converted to wide format, a missing time period or even missing data on a single variable at a single time can cause all the data for an individual to be lost. In addition xtdpdml models are computationally intensive. xtdpdml therefore works best when panels are strongly balanced, \(T \) is small (e.g. less than 10), and there are no missing data. If these conditions do not apply to your data, consider doing the following.

- The fiml option will often help when some data are missing or when entire time periods are missing for some individuals. Nonetheless, while fiml worked very well in the
examples presented here, we have found it can have problems with extremely unbalanced panels, especially when some time periods have only a few cases.

- Consider restricting your data to a smaller range of time periods where most or all cases have complete data. Or, you might consider using only every 4th year, e.g., 1980, 1985, 1990, ..., 2015. Using fewer variables in the model may also help.

- Consider rescaling variables, e.g., measure income in thousands of dollars rather than in dollars. This can help with numerical precision problems. The std option makes rescaling and standardizing variables easy, although it may make coefficients a little harder to interpret. If std solves a convergence problem then you may want to rescale the variables yourself in a more interpretable way, e.g., if income is measured in dollars, then compute income/1000 to measure income in thousands of dollars.

- Stata 14.2 changed the way start values are computed. Our experience is that models using fiml tend to run far more quickly in 14.2 compared with earlier versions. However, sometimes the new start values actually make the models run more slowly or cause convergence problems. If you are running Stata 14.2 or later, you can add the options skipcfatransform and/or skipconditional to make Stata use the old starting values method. altstart is an easy way to specify both options.

- Mplus sometimes succeeds when Stata has problems and is often much faster. Try the mplus option if you have access to that software.

There are several other options you can try if you are having problems achieving convergence. Much of this advice applies to many programs, not just xtdpdml.

- The difficult option will sometimes work miracles. There is no guarantee it will work (sometimes it makes things worse) but it is very easy to try.

- The technique option can be specified to use different maximization techniques. See the help for maximize.

- evars sometimes helps with convergence when there are no predetermined variables in the model. It is an alternative and usually less efficient way of specifying the error terms. But sometimes it helps and may be necessary for replicating results from earlier versions of xtdpdml.

- The iterate option can be used to increase or decrease the number of iterations that xtdpdml performs before giving up. The details option will show the iteration log. You can increase or decrease the number of iterations depending on whether it appears the program is converging to a solution.

Finally, remember that problems with regressing y on lagged y may not be that severe when N is large and/or T is large and/or the autoregressive coefficient is small (Arellano 2003). Commands
like `xtreg` or `xtabond` may meet your needs in such situations. But even then, as our examples showed, features like FIML and time-invariant independent variables may make it worth your while to pare your dataset down so you can do at least some analyses with `xtdpdml`.

6. Other alternatives to `xtdpdml`

The user-written commands `xtmoralb` (Moral-Benito 2013) and `xtdpdqml` (Kripfganz, 2016; available from SSC) both do maximum likelihood estimation for dynamic panel models. They can do some of the same things as `xtdpdml`, and may be useful in some situations. However, they also have some important limitations. `xtmoralb` works extremely well with predetermined variables (indeed we used it to refine `xtdpdml`). However, it cannot handle time-invariant variables, lagged exogenous variables, and is not fully efficient with strictly exogenous variables.

`xtdpdqml` works with strictly exogenous variables and can also sometimes produce results very similar to `xtdpdml`. However, it cannot handle time-invariant variables (in a fixed effects model) and (according to the author) is inappropriate for predetermined variables. Also, `xtdpdqml` implements the ML method of Hsiao et al (2002) which makes strong and questionable assumptions about initial conditions.

7. Support

Additional information on the `xtdpdml` command, as well as suggestions for dealing with possible problems, can be found on its support page at

https://www3.nd.edu/~rwilliam/dynamic/index.html

8. Acknowledgments

Ken Bollen and Jennie Brand graciously provided us with the data from their 2010 Social Forces paper to use in our examples. UCLA and Michael Mitchell kindly allowed us to take their `stata2mplus` program and adapt it for our purposes. Code from Mead Over's `linewrap` program was modified for use with the `semfile` option. William Lisowski and Clyde Schechter provided comments that improved program coding. Paul von Hippel offered helpful comments on the program's documentation. Kristin MacDonald and other Stata Corp staff were very helpful in modifying Stata so that `sem` and `xtdpdml` would execute much more quickly. The editor and an anonymous reviewer provided numerous valuable suggestions for the manuscript and for the program itself. Particularly helpful were comments that helped us to make our examples more effective and that made our arguments more relevant and understandable to a broader audience.

9. References

