
STATISTICS/DATA ANALYSIS

REFERENCE MANUAL

The Computing Resource Center
10801 National Boulevard
Los Angeles, California 90064
Copyright ©1984

STATISTICS/DATA ANALYSIS

REFERENCE MANUAL

The Computing Resource Center
10801 National Boulevard
Los Angeles, California 90064
Copyright ©1984

First Edition (November 1984)

Version 1.0
Copyright© Computing Resource Center 1984

Computing Resource Center provides this manual "as is" without warranty of any
kind, either express or implied, including, but not limited to the implied warranties
of merchantability and fitness for a particular purpose. CRC may make
improvements and / or changes in the product(s) and the program(s) described in
this manual at any time and without notice.

This manual contains proprietary information protected by copyright. All rights are
reserved. No part of this manual may be photocopied or reproduced in any form -~
without prior written consent from Computing Resource Center.

The software described in this manual is furnished under a license agreement or
nondisclosure agreement. The software may be copied only in accordance with
the terms of the agreement. It is aqainst the law to copy STAT A onto cassette tapes,
disk, diskette, or any other medium for any purpose other than backup or archival
purposes.

STATA is a trademark of Computing Resource Center. IBM is a trademark of
International Business Machines Corporation.

"

How to Use this Manual

Two manuals accompany the STATA program - the STATA
User's Guide and the STATA Reference Manual. The
STATA User's Guide gives an overview of STATA. If
you are new to STATA, you should consult the User's
Guide for information on its features.

This document is the STATA Reference Manual. It
provides a technical reference to every feature of
STATA. Each STATA command is presented in
alphabetical order. The syntax and function of the
command, along with all its options, are explained.
The Reference Manual is, in essence, STATA's
dictionary. It will not teach you how to "speak"
STATA, but will refresh and augment your knowledge
of particular STATA commands and options.

Contents

STATA Fundamentals
How to Start and Stop STATA •••••••••••••••••
Keyboard Entry
Input Prompt and Return Message •••••••••••••

The Elements of STATA ••••••••••••••••••••••••••
Numbers Names
Raw Data Cross-Product
Language Syntax
Abbreviation Rules

.............................
varlists
Expressions •·••••··•··••·•••••••••••••••••••

STATA Command Reference

Appendices
A. Description of Examples census.dta

hoel.dta
oddeven.dta

B. Memory Management in STATA ••·••••••••••·
c. Messages and Return Codes•••••••••••••••
D. Methods and Formulae···•·•••·•••·••·····
E. Hardware Requirements•••••••••••••••••••
F. Installation Instructions •••••••••••••••

1
1
2
3

4
4
5
5
6
7
9
9

11

18

151
151
151
154
157
158
161
170
174
175

STATA Fundamentals

How to Start and Stop STATA

Before using STATA for the first time you must
install it on your PC (See Appendix F. Installation
Instructions).

Your computer must be turned on, DOS must be
loaded, and the STATA.EXE file must be available on
the current drive and directory. To begin to run
STATA, type ''STATA" and press the Return key.
Something like the following will appear on your
monitor:

A>stat:a

==S=T=A=T=A==l.O== Copy~ight (C) 1984 by ==C=R=C==

The final line contains a period(.) and the cursor
(indicated by_). The period is the STATA prompt.
It indicates that STATA is running and is ready to
accept your next command.

To exit from STATA and return to DOS, use the exit
command. If the data set in memory has changed
since the last time it was saved, you must type
exit, clear to leave STATA. This prevents you from
accidentally losing your data.

You may optionally include any STATA command on the
invocation line. For instance, typing

~ stat:a run profile in response to the DOS prompt
will start STATA and execute the do file
"profile.do" . This method of starting STATA is
useful if you wish to have STATA perform a certain
"set-up" procedure every time you enter it.

- 1 -

Fundamentals

Keyboard Entry

In addition to the normal typewriter keys, certain
keys provide editing functions in STATA. These
functions affect the current line, that is, the
command you are in the process of typing. The
STATA editing keys are:

Esc deletes the line and lets you start over.

Backspace (the key to the right of=) backs up and
deletes one character.

Left-Arrow (4 on the numeric keypad) backs up one
character but leaves the character on the
screen. You may type over the character, or use
the Right-Arrow to space over it, leaving it in
place.

Right-Arrow (6 on the numeric keypad) moves the
cursor forward one position, retrieving the
previous character typed (from Backspace or
Left-Arrow or from the previous line).

Ctrl-Right-Arrow (hold down Ctrl and press 6 on the
numeric keypad) moves the cursor to the end of
the line, retrieving the previously typed
characters (from Backspace or Left-Arrow or from
the previous line).

Ctrl-Break (hold down Ctrl and press Break) tells
STATA to cancel what it is doing and to return
control to the keyboard as soon as possible.
You may press Ctrl-Break at any time.

- 2 -

Fundamentals

Input Prompt and Return Message

STATA prompts you to enter a command with a single
period on the left hand side of the screen. After
you enter a command, STATA produces any output
generated by the command and displays a return
message. For instance:

• drop _all
R; T=0.16 15:52:10

The user typed drop _all after the period prompt,
and STATA responded with the message
"R; T=0.16 15:52:10". The "R;" indicates that
STATA successfully completed the command. The
"T=O .16" shows the amount of time, in seconds, it
took STATA to perform the command (timed from the
point at which the user pressed Return to the time
at which STATA typed its return message). In
addition, STATA shows the time-of-day using a
24-hour clock. This command completed at 3:52 p.m.

When an error occurs, STATA produces an error
message and a return code. For instance:

• list ayvar
No variables defined
R(lll) ; T=0.11 15:52:25

After typing drop _all, the user asked STATA to
list the variable named myvar. STATA responded
with the message "No variables defined" and a
slight variation on the return message. The number
after the R (in this case 111) is called the return
code. Errors are numbered in STATA. You need not

~ keep track of the numbers since STATA always
displays a message describing the problem.
However, if you want more information you can look
up the return code in Appendix C, Messages and
Return Codes.

- 3 -

The Elements of STATA

Numbers

A number may contain a sign, an integer part, a
decimal point, a fraction part, an e or E, and a
signed integer exponent. Numbers may not contain
commas; for example, the number 1,024 must be typed
as 1024 (or 1024. or 1024.0 or •••). The following
are examples of valid numbers:

5
-5
5.2
.5
5.2e+2
5.2e-2

A number can also take on the special value "
"missing", denoted by a single period (.) • You may
specify a missing value any place you may specify a
number. Do not place the period in double quotes
or STATA will interpret it as a string. Missing
values differ from ordinary numbers in one respect:
any arithmetic operation on a missing value yields
a missing value.

Technical Note : Numbers can be stored in one of
four variable types : int, long, float (the
default), or double. ints are stored in 2 bytes,
longs and floats in 4 bytes, and doubles in 8
bytes. ints may contain any number between -32,768
and 32,766 inclusive, and missing values are stored
as 32,767. longs may contain any number between
-2,146,483,648 and 2,147,483,646 inclusive, and ~
missing values are stored as 2,147,483,647. floats
may contain any number between +/-l0A-37 and
+/-10A37, and missing values are stored as 2Al28.
doubles may contain any number between +/-l0A-99

- 4 -

~

Elements

and +/-10A99, and missing values are stored as
2A333 O

Do not confuse the term integer, which is a
characteristic of a number, with int, which is a
storage type. For instance, 5 is an integer no
matter how it stored. Thus if you read that an
argument is required to be an integer that does not
mean that it must be stored as an int.

Names

A name is a string of one to eight letters (A-Zand
a-z), digits (0-9), and underscore(_). STATA
reserves the names double, float, if, in, int,
long, using, with, _all, _b, _coef, _n, _N, _pi,
and _re. You may not use these reserved names for
your variables. The first character of a name must
be either a letter or an underscore. We recommend,
however, that you do not begin your variable names
with an underscore. All STATA built-in variables
begin with an underscore, and we reserve the right
to incorporate new _variables freely.

STATA respects case, that is, m:yvar, Myvar, and
MYVAR are distinct names in STATA.

Raw data (data) is a rectangular table of numeric
values where each row is an observation on all the
variables and each column contains all the
observations on a single variable. Observations
are numbered sequentially from 1 to _N. The
following example of data contains the first five
odd and the first five even numbers:

- 5 -

Elements

1.
2.
3.
4.
5.

odd
1
3
5
7
9

even
2
4
6
8

10

The observations are numbered 1 to 5 and the
variables are named odd and even.

Cross-Product

A data set can be stored as a cross-product (xp)
rather than as data. Define X to be a raw data
matrix augmented on the left with a system variable
(_cons) every element of which is equal to one.
The xp form of this data is the matrix inner
product X'X. For the example above, the
corresponding xp form is:

1.
2.
3.

_cons
5

24
29

odd
24

156
180

even
29

180
209

Several STATA commands, such as regress and
correlate, execute more rapidly if the data set is
stored in xp form. In addition, STATA can process
a data set with an unlimited number of observations
if the data set is stored in xp form. The convert
command can be used to transform data format data
sets to xp data sets. Note that not all STATA
commands can be used on xp data sets. See the
description of the convert command for more
details.

It is also possible to enter a cross-product
directly into STATA (using input or infile) and
then to direct STATA to interpret the data as a
cross-product via the set contents xp command. If

- 6 -

~

Elements

you use this method, you must be careful that the
data you input conforms exactly to the description
of X'X given above. For example, the value in the
first row and first column must contain the number
of observations in the data set. When you input or
infile your data, you may give the first variable
any name except _cons. The set contents xp command
automatically renames the first variable _cons if
the data set meets the requirements of a cross
product. _cons is the special name STATA reserves
for the first column of a cross-product. (Note: As
a convenience, STATA allows you to set one, but not
both, of a pair of corresponding off-diagonal
elements of a cross-product to missing value. The
non-missing value will be automatically copied over
the missing value by •et contents xp.)

Technical Note: When STATA creates a cross
product, it stores all the data as doubles. If you
create your own cross-product directly, we
recommend that you do likewise. However, you may
use any variable types you wish.

Language Syntax

With few exceptions, the basic language syntax is:

[by varlist:] command [varlist] [-exp]
[if exp] [in range] [, options]

where square brackets denote optional qualifiers.
In this diagram, ''varlist" denotes a list of
variable names, "command" denotes a STATA command,
"exp" denotes an algebraic expression, "range"
denotes an observation range, and "options" denotes
a list of options.

Most commands that take a subsequent varlist do not
require one to be explicitly typed. If no varlist
appears, these commands assume a varlist of _all,

- 7 -

Elements

the STATA shorthand for indicating all the
variables in the data set. In commands that alter
or destroy data, STATA always requires that the
varlist be specified explicitly .

The by varlist: prefix and the if exp and in range
qualifiers are described completely in the Command
Reference section of this manual. Briefly, the
by varlist: prefix causes STATA to repeat a command
for each subset of the data for which the values of
the variables in the varlist are equal . The if exp
qualifier restricts the scope of the command to
those observations for which the value of the
expression is non-zero . The in range qualifier
restricts the scope of the command to a specific
observation range .

The =exp phrase serves two different functions. In
the generate and replace commands, =exp specifies
the values to be assigned to a variable. In other ~
STATA commands, =exp is used to indicate the weight
to attach to each observation. In these latter
commands , failing to specify a weight is equivalent
to specifying =l.

Many commands take command specific options. These
are described along with each command in the
Command Reference section of this manual.

STATA treats any line starting with a"*" as a
comment and ignores it.

- 8 -

Elements

Abbreviation Rules

Command, variable, and option names may be
abbreviated to the shortest string of characters
that uniquely identifies them. For instance, there
are four commands that start with the letter "r":
regress, re1U111e, replace, and run. Therefore
regress may be abbreviated as regres, regre, regr,
or reg. It may not be abbreviated as re since this
string does not distinguish regress from renaae and
replace.

There is one exception to the abbreviation rule:
if a command or option alters or destroys data,
then the command or option name must be spelled out
completely. For example, the drop command may not
be abbreviated.

var lists

A varlist is a list of variable names. The
variable names in a varlist refer exclusively
either to new (not yet created) variables or to
existing variables.

In lists of existing variable names, variable names
may be repeated in the varlist. The variable names
may also be abbreviated. A "*" may be appended to
a partial variable name to indicate all variables
that start with that letter combination. For
example, if the variables popltS, pop5to6, and
popl8p are in your data set, you may type pop* as a
shorthand way to refer to all three variables. You
may also place a dash(-) between two variable
names to specify all the variables stored between
the two listed variables inclusive. (The describe
command lists variables in the order in which they
are stored.)

In lists of new variables, no variable names may be

- 9 -

Elements

repeated or abbreviated in the varlist. You may
specify a dash(-) between two variable names that
have the same letter prefix and that end in
numbers. This form of the dash notation indicates
a range of variables in ascending numerical order.
For instance, typing ''vl-v4f' is equivalent to
typing "vl v2 v3 v4".

In lists of new variables, you may type the name of
a storage type before the variable name to force a
storage type other than the default. The storage
types are int, long, float (the default), and
double. For instance, the list ''varl int var2
var3" specifies that varl and var3 are to be given
the default storage type, and var2 is to be stored
as an int. You may use parentheses to bind a list
of variable names. The list "var 1 int(var2 var3)"
specifies that both var2 and var3 are to be stored
as ints.

In lists of new variables, you may also append a
colon and a value label name. For instance, ''varl
var2:myfmt" specifies that the variable var2 is to
be associated with the value labels stored under
the name myfmt. This has the same effect as typing
the list "varl var2" and then subsequently giving
the command

label values var2 11Jflllt

The advantage of specifying the value label
association with the colon notation is that the
value labels can then be used by the current
command. (See the descriptions of the input and
infile commands for further explanations of using
the colon notation.)

- 10 -

Elements
Expressions

STATA includes a complete expression parser.
Algebraic expressions are specified in a natural
way using the standard rules of hierarchy. For
instance, myvar+2/othvar is interpreted as
myvar+(2/othvar). You may use parentheses freely
to force a different order of evaluation.

Operators

The arithmetic operators in STATA are:
+ (addition), - (subtraction),* (multiplication),
/ (division), ... (raise. to a power), and the prefix
- which indicates negation. Any arithmetic
operation on a missing value or any impossible
arithmetic operation (such as division by zero)
yields a missing valu~.

~ The relational operators in STATA are: > (greater
than),< (less than),>= (greater than or equal),
<= (less than or equal),= (equal), and-= (not
equal). Note that the relational operator for
equality is a pair of equal signs. This convention
distinguishes relational equality from the =exp
phrase.

Relational expressions are either true (denoted by
1) or false (denoted by 0). Relational operations
are performed after all arithmetic operations.
Thus the expression (3>2)+1 is equal to 2 while
3>2+1 is equal to 0. Missing values may appear in
relational expressions. The expression x=. is
true (equal to 1) if xis missing and false (equal
to 0) otherwise. A missing value is greater than

~ any non-missing value.

The logical operators in STATA are: & (and),
I (or), and - (not). On input, the logical
operators interpret any non-zero value (including

- 11 -

Elements

missing value) as true and zero as false. Like the
relational operators, they return the value 1 for
true and O for false. For example, the expression
5 & • is equal to 1. Logical operations, except
for-, are performed after all arithmetic and
relational operations; the expression 3>2 & 5>4 is
interpreted as (3>2)&(5>4) and is equal to 1.

The order of evaluation (from first to last) of all
the operators is: - (negation),-, A'/,*,
- (subtraction),+,-=,>,<,<=,>=,=,&, I.

Functions

Functions may appear in expressions. Functions are
indicated by the function name, an open
parenthesis, an expressio.n or expressions separated
by commas, and a close parenthesis. For example,
the square root of a variable named xis specified
by typing sqrt(x). All functions return missing
values when given missing values as arguments or
when the result is undefined.

The mathematical functions in STATA are: abs(x)
(absolute value), atan(x) (arc-tangent returning
radians), cos(x) (cosine of radians), exp(x)
(exponent), mod(x,y) (the modulus of x with respect
toy), sin(x) (sine of radians), and sqrt(x)
(square root).

The statistical functions in STATA are:
chiprob(df,x) (the cumulative chi-square with df
degrees of freedom and value x), fprob(dfl,df2,f)
(the cumulative F-distribution with dfl numerator
and df2 denominator degrees of freedom), invnora(p)
(the inverse cumulative normal), noraprob(z) (the
cumulative normal), and tprob(df,t) (Student's
cumulative t-distribution with df degrees of
freedom).

- 12 -

----..,

Elements

STATA includes a random number function, unifora(),
which takes no arguments (although you must include
the open and close parentheses). It produces
uniformly distributed pseudo-random numbers over
the open interval zero to one. Every time STATA is
started, uniform() produces the same sequence of
numbers. The seed value, and hence the sequence of
pseudo-random numbers, can be changed with the set
seed command.

STATA also includes the following special
functions:

autocode(x,ng,xmin,xmax) partitions the interval
from xmin to xmax into ng equal length intervals
and returns the upper bound of the interval
which contains x. This function is an automated
version of recode() (see below). The algorithm
for autocode is

if (x==. Ing== . xmin==. xmax==. I ng<=O
I xmin>=xmax) then return.

otherwise
for i=l to ng-1

xmap=xmin+i*(xmax-xmin)/ng
if x<=xmap then return xmap

end
otherwise

return xmax

cond(x,a,b) returns a if x evaluates to true
(not 0) and b if x evaluates to false (0). For
example,

generate aaxincmcond(incl>inc2,incl,inc2)

creates the variable maxinc as the maximum of
incl and inc2.

float(x) returns the value of x rounded to float.
Although you may store your variables as double,

- 13 -

Elements

float, long, or int, STATA converts all numbers
to double before performing any calculations.
As a consequence, difficulties can arise when
comparing numbers that have no finite digit
binary representation. For example, if the
variable xis stored as a float and contains the
value 1.1 (a repeating decimal in binary) the
expression x-1.1 will evaluate to false because
the literal 1.1 is the double representation of
1.1 which is different than the float
representation stored in x.
x==-float(l.l) will evaluate
float function converts the
float representation before

The expression
to true, because the
literal 1.1 to its
it is compared to x.

group(x) creates a categorical variable that
divides the data into x as near equally sized
subsamples as possible, numbering the first
group 1, the second 2, and so on.

int(x) returns the integer obtained by truncating
x.

1118lt(xl,x2, ••• ,xn) returns the maximum of xl, x2,
••• , xn. Missing values are ignored. If all
the arguments are missing, missing is returned.

ai.n(xl,x2, ••• ,xn) returns the minimum of xl, x2,
••• , xn. Missing values are ignored. If all
the arguments are missing, missing is returned.

recode(x,xl,x2, ••• ,xn) returns missing if xis
missing, xl if x<=xl, x2 if x<=x2, ••• , or xn if
is greater than xl, x2, ••• , x(n-1).

~

sign(x) returns missing if xis missing, -1 if x<O, ~
0 if x==O, and 1 if x>O.

sua(x) returns the running sum of x, treating
missing values as zero. For example, following
the command

- 14 -

~

Elements

generate y • sua(x)

the i-th observation on y contains the sum of
the first through i-th observations on x.

System Variables (_variables)

Expressions may also contain _variables (pronounced
"underscore variables"). These are built-in,
system variables that are created and updated by
STATA. They are called _variables because their
names all begin with the underscore character(_).

The _variables in STATA are:

_coef[varname] (synonym : _b[varname]) contains the
value (to machine pr.ecision) of the coefficient
on varname from the last most recent regression.

_cons is always equal to the number 1.

_n contains the number of the current observation.

_R contains the total number of observations in the
data set.

_pi contains the value of pi to machine precision.

_pred contains the predicted values of the
dependent variable from the most recent
regression. The predictions are formed using
the current values of the regressors which may
not be the same as the values they contained
when the regression was run. As a result, _pred
can be used to calculate forecasts and other
out-of-sample predictions. For instance, you
may use one data set, run a regression, then use
another data set and make predictions using
_pred.

- 15 -

Elements

_re contains the value of the return code from the
most recent capture command.

Explicit Subscripting

Individual observations on variables can be
referenced by subscripting the variables. Explicit
subscripts are specified by following a variable
name with square brackets that contain an
expression. The result of the subscript expression
is truncated to an integer and the value of the
variable for the indicated observation is returned.
If the value of the subscript expression is less
than 1 or greater than _B, a missing value is
returned.

As an example, the lagged value of a variable x can
be generated by

generate xlag s x[_n-1)

The first observation on xlag is equal to missing
value.

When a command is preceded by the by varlist:
prefix, subscript expressions and the _variables _n
and _Bare evaluated relative to the subset of the
data currently being processed. For example, in
the data set

bvar oldvar
1. 1 1.1
2. 1 2.1
3. 1 3.1
4. 2 4.1
5. 2 5.1

the command

by bvar: gen newvar-oldvar [l]

- 16 -

will produce

1.
2.
3.
4.
5.

Label Values

bvar
1
1
1
2
2

oldvar
1.1
2.1
3.1
4.1
5.1

newvar
1.1
1.1
1.1
4.1
4.1

Elements

You may use labels in an expression in place of the
numeric values with which they are associated. To
use a label in this way, type the label in double
quotes followed by a colon and the name of the
value label. For instance, if the value label
yesno associates the label "yes" with 1 and the
label "no" with O, then •yea•:yeano is evaluated as
1. If the double quoted label is not defined in
the indicated value label, or the value label
itself is not found, a missing value is returned.
Thus , the expression ._ybe•:yeano is evaluated as
a missing value.

- 17 -

STATA Co11DJ1and Reference

This chapter contains reference information on
every STATA command. The commands are presented in
alphabetical order. To improve readability, the
information is presented in a standardized format
to improve the readability of the reference
information described below.

Syntax

The reference material begins with a complete
syntax diagram of the command. Items in boldface
should be typed exactly as they appear in the
syntax diagram (subject to STATA's abbreviation
rules, of course). Syntax diagrams employ the
following symbols:

[]
{}

I
%£mt
exp
filename

newvar

oldvar
options
range
"string"
varlist
varname
xvar

yvar

Indicates a literal number; e.g., 5
Anything enclosed in brackets is optional
At least one of the elements enclosed in
braces must appear
The vertical bar separates alternatives
Any STATA format, e.g., 8.2f
Any STATA expression, e.g., (S+varname)/2
A DOS filename (may include DOS path),
e.g., b:myfile.dta
A variable that will be created by the
current command
A previously created STATA variable
A list of options
An observation range; e.g. 5/1
Any string of characters
A list of variable names
A variable name
The variable to be displayed on
horizontal axis
The variable to be displayed on
vertical axis

- 18 -

the

the

-----.

~

Reference

Purpose

A brief description of the purpose of the command.

Remarks

This section contains any necessary amplifications
or qualifications.

Output

If the command displays any output, it is described
in this section.

Options

,..-....._ If the command takes options, they are explained
here.

Example

For all but the most trivial commands, one or two
examples are presented. These examples list a
partial STATA session in which the command is used.
Explanatory text accompanies the listing when
necessary.

You may notice that the execution times of the
STATA commands vary a great deal from example to
example. This is because the examples were run on
a variety of computers which are configured in

~ different ways. If you want to make STATA run as
fast as possible, we recommend that you install an
8087 Math Coprocessor. You might also configure a
memory disk and place STATA on it, but be sure to
leave at least 256K of memory available.

- 19 -

Reference

Many of the examples make use of common data sets
described in Appendix A.

- 20 -

#command command_arguments

Purpose

The #commands are the STATA pre-processor commands.
See specific #command for details.

Remarks

#commands may be entered whenever STATA issues a
period prompt, including during prompting of input
and aodify. #commands are instructions to the
STATA pre-processor rather than to STATA itself,

~ and they affect how STATA treats the terminal and
line-input buffer.

#commands do not generate a return code, nor do
they generate ordinary STATA errors. The only
error message associated with #commands is
"unrecognized #command".

- 21 -

#deliait {er I ;}

Purpose

The #deliait command resets the character that
marks the end of a command.

Remarks

STATA begins to process a command as soon as the
delimiter is typed. When a STATA session begins,
the delimiter is the carriage return, also called
the Return key. It is sometimes convenient,
particularly in do-files, to use a semicolon rather
than a carriage return to delimit commands. The
characters "er" must be typed to reset the
delimiter to the Return key.

Note that a semicolon appearing in a double-quoted
string is not interpreted as a delimiter even if
the semicolon is currently used as the delimiter.
Also, whenever a new do-file is invoked, the
delimiter is reset to er. At the end of the do
file, the previous delimiter is restored
automatically.

Example

The command

#deli.a.it;

causes STATA to treat the semicolon as the
delimiter.

- 22 -

~

#deliait

The command

~ #delimit er

causes STATA to treat the carriage return as the
delimiter.

- 23 -

#review [# [Ill

Purpose

The #review command displays the last few lines
typed at the terminal.

Remarks

If no arguments follow #review, the last five lines
typed at the terminal are displayed. The first
argument specifies the the number of lines to be
reviewed, so that #review 10 displays the last ten
lines typed. The second argument specifies the ~
number of lines to be displayed, so that
#review 10 5 displays five lines, starting at the
tenth previous line. The last line displayed by
#review is left in the line input buffer and may be
edited.

STATA reserves a buffer for #review lines and
stores as many previous lines in the buffer as will
fit, rolling out the oldest line to make room for
the newest line. Requests to #review lines no
longer stored will be ignored. Only lines typed at
the terminal are placed in the #review buffer.

- 24 -

Example

• #review
use hoel
* comments go
describe
tabulate mar
tabulate mar

• #review 2
tabulate mar
tabulate mar

• #review 2 1
tabulate mar

#review

into the #review buffer too

ed =number
ed ==number, chi2

ed =number
ed ==number, chi2

ed ==number

- 25 -

append using filename

Purpose

The append command appends a STATA format data set
stored on disk to the end of the data set currently
in memory. If "filename" is specified without an
extension, ".dta" or ".xp" is assumed (depending on
whether the current data set is data or xp).

Remarks

The disk data set must be a STATA format data set,
that is, it must have been created with the save
command. If the disk file was encoded, the current
encode key must be set appropriately (see set
encode for details). The disk data set also must
be of the same type (either data or xp) as the data
set in memory. When xp data sets are appended, a
new variable, called _append, is created. This
variable can serve as a dummy variable to indicate
a separate constant for the appended data set.

Technical Note: xp data sets are appended by name,
that is, if there is a variable named xl in both
data sets, they will be joined (summed) regardless
of their respective positions in the data set. If
a variable exists only in one or the other data set
the xp information will be copied across unchanged,
thus effectively creating an interaction of that
variable with a dummy variable reflecting the
sample.

- 26 -

~

append

Options

nolabel prevents STATA from copying labels from the
disk data set into the data set in memory. In
no event do labels from the disk data set
replace labels already in memory.

Example

In this example, a data set containing the sixth
through eighth even numbers is appended to a data
set containing the first five odd numbers •

• use eveu.dta
(6th through 8th even numbers)
R; T=4.99 13:54:23

~ . list

number even
1. 6. 12.
2. 7. 14.
3. 8. 16.

R; T=2.14 13:54:27

• use odd.dta
(First five odd numbers)
R; T=S.21 13:54:42

. list

number odd
1. 1. 1.
2. 2. 3.
3. 3. 5.
4. 4. 7.
s. s. 9.

R·
'

T=2.47 13: 54:47

- 27 -

appencl

• append using evea.dta
R; T=3.35 13:55:00

• list

number odd
1. 1. 1.
2. 2. 3.
3. 3. 5.
4. 4. 7.
5. 5. 9.
6. 6.
7. 7. .
8. 8.

R; T=3.13 13:55:07

even

12.
14.
16.

In the next example, xp data sets are appended •

• use oddevea.dta
R; T=6.81 16:14:10

• list

1.
2 .
3.
4.
5.

R; T=4.06

• convert
(obs=5)

odd
1.
3.
5.
7.
9.

16: 14: 16

even
2.
4.
6.
8.

10.

Varname I Mean Std. Dev. Min. Max.
--------+------------------------------

odd I 5. 3.162278 1. 9.
evenl 6. 3.162278 2. 10.

R; T=l0.44 16:14:30

- 28 -

~

~

• describe
Contains crossproduct (xp)
Vars: 3 (max= 100)

1. _cons double %10.0g
2. odd double %9.0g
3. even double %9.0g

Note: Data has changed since last save
R; T=2.75 16:15:02

. list

_cons odd
1. 5. 25.
2. 25. 165.
3. 30. 190.

R· , T=3.57 16: 15:07

. save oddeven.:z:p
File oddeven.xp saved
R; T=l3.29 16:15:26

• use aoredata.dta.
R· , T=5.99 16:15:36

. list

1.
2.
3.

R; T=3.79

• convert
(obs=3)

odd
11.
13.
15.

16: 15:43

clear

even
12.
14.
16.

even
30.

190.
220.

Varname I Mean Std. Dev. Min. Max.
--------+------------------------------

odd I 13. 2. 11. 15.
evenl 14. 2. 12. 16.

R; T=l0.65 16:15:55

- 29 -

append

append

• describe
Contains crossproduct (xp)
Vars: 3 (max= 100)

1. _cons double %10.0g
2. odd double %9.0g
3. even double %9.0g

Note: Data has changed since last save
R; T=3.62 16:16:01

• list

1.
2.
3.

R; T=3.95

_cons
3.

39.
42.

16:16:05

odd
39.

515.
554.

• append using oddeven.xp
R; T=6.26 16:16:29

• describe
Contains crossproduct (xp)
Vars: 4 (max= 100)

1. _cons double %10.0g
2. odd double %9.0g
3. even double %9.0g
4. _append double %10.0g

even
42.

554.
596.

Note: Data has changed since last save
R; T=3.35 16:16:34

• list

_cons odd
1. 8. 64.
2. 64. 680.
3. 72. 744.
4. 5. 25.

R; T=4.50 16:16:39

even _append
72. 5.

744. 25.
816. 30.
30. 5.

- 30 -

beep

Purpose

The beep command causes the computer to emit a
single beep.

Remarks

This command can be used in do-files to signal that
a time-consuming task is completed.

~ Example

• beep
R; T=2.14 14:57:41

(The computer emits a single beep)

- 31 -

by varlist: STATA_command

Purpose

The by prefix causes a STATA command to be repeated
for each unique set of values of the variables in
varlist. The data set must already be sorted by
the varlist.

Remarks

by is an optional prefix ·to perform STATA_command
for each group of observations for which the values
of variables in the ''varlist" are the same. During ~
each iteration, the values of the system variables
_n and _Bare set relative to the first observation
in the by-group. The "in range" modifier cannot be
used in conjunction with "by varlist :" because
ranges specify absolute rather than relative
observation numbers.

The results of STATA_command will be the same as if
you formed separate data sets for each group of
observations, sayed them, used each separately, and
issued STATA_command.

by may not be used with xp data sets.

Example

• use hoel.dta
R; T=S.17 19:13:32

- 32 -

~

• sort aarriage
R; T=l.04 19:13:36

• describe
Contains data
Obs: 12 (max= 609)

Vars: 3 (max= 100)
1. marriage float %9.0g marlbl
2. educ float %9.0g edlbl
3. number float %9.0g

Sorted by: marriage
Note: Data has changed since last save
R; T=0.99 19:13:38

• list. nolabel

marriage educ number
1. 1. 2. 17.
2. 1. 3. 11.
3. 1. 1. 18.
4. 2. 3. 10.
5. 2. 2. 28.
6. 2. 1. 29.
7. 3. 1. 70.
8. 3. 3. 11.
9. 3. 2. 30.

10. 4. 3. 20.
11. 4. 2. 41.
12. 4. 1. 115.

R·
'

T=3.73 19:13:45

. by aarriage: sm.arize nuaber

-> marriage= Very Low

by

varnamel Obs Mean Std. Dev. Min. Max.
--------+---------------------------------------

number I 3 15.333333 3.7859389 11. 18.

- 33 -

by

-> marriage= Low
varnamel Obs Mean Std. Dev. Min. Max.

--------+---------------------------------------
number I 3 22.333333 10.6926766 10. 29.

-> marriage= High
varnamel Obs Mean Std. Dev. Min. Max.

--------+---------------------------------------
number I 3 37. 30.1164407 11. 70.

-> marriage= Vry High
varnamel Obs Mean Std. Dev. Min. Max.

--------+---------------------------------------
number I 3 58.666667 49.9032397 20. 115.

R; T=l0.98 19:14:11

- 34 -

capture STATA_command

Purpose

The capture command executes STATA_command and
issues a return code of zero. The actual return
code generated by STATA_command is stored in the
system variable _re.

Remarks

The capture command is useful in do-files where any
non-zero return code automatically terminates the

~ do-file. By preceding sensitive commands with the
word capture, the do-file can respond appropriately
to any situation by conditioning the remaining
actions on the value of _re.

~

Example

• drop _all
R; T=0.16 09:05:49

• list ayvar
No variables defined
R(lll); T=0.22 09:06:33

• capture list ayvar
No variables defined
R; T=0.11 09:07:06

• display m_rc
111.

R; T=0.28 09:07:39

- 35 -

Purpose

confira existence [string]
variable [varlist]
newvariable [varlistl

The confira command checks on the existence of a
string or the status of varlist . The confira
existence command issues a return code of zero if
the string is non-null and a non-zero return code
if the string is null. The confira variable
command issues a return code of zero if the
variables in the varlist already exist in the
current data set and a non-zero error code if any
of the variables do not already exist. The confira ~
newvariable command issues a return code of zero if
.!!QM of the variables in the varlist already exists
in the current data set and all the names in the
variable list are legal STATA variable names. If
either of these conditions fails, the command
returns a non-zero return code. Note that the
confira newvariable command ignores the STATA rules
for abbreviating variable names. A variable is
considered to be new unless its name exactly
matches the complete name of an existing variable.

Remarks

The confira command is most useful in do-files,
particularly in conjunction with the capture
command . It can be used, for example, to insure
that necessary macros are non-null before commands
using the macros are given.

- 36 -

confira

Example

• aacro def i.Jle not_null "This aacro is not nu11 •
R; T=2.47 14:56:37

• aacro define null••
R; T=l.48 14:56:46

• aacro list
null:
not_null: This macro is not null
R; T=l.86 14:56:51

• confira existence %not_null
R; T=l.54 14:57:04

• confira existence %null
R(6); T=0.05 14:57:10

• confira existence null
R; T=0.05 14:57:15

• confi:ra existence
R(6); T=0.05 14:57:18

- 37 -

convert [varlistl [in range]
[if exp] [•expl

--

Purpose

The convert command converts a standard (data)
STATA format data set into a cross product (xp)
STATA format data set. convert may not be
abbreviated.

Remarks

This command converts the data set in memory into
an xp data set. The origi~al data set in memory is ~
destroyed. A system variable called _cons is
created. This new variable forms the first column
(and row) of the cross product matrix. Its first
element is the weighted number of observations.
The remaining elements are the weighted sums of the
other variables in the matrix. All columns in the
cross product matrix have type double regardless of
the original types of the variables comprising the
data.

The convert command is useful for reducing large
data sets to a manageable size and for increasing
the speed of the correlate, s...arize, and regress
commands. STATA xp data sets can be appended,
allowing regressions to be run on data sets that
would normally be too large to fit in the available
memory.

STATA will not permit the conversion of a data set
whose contents have been changed during the current
STATA session unless the clear option is specified.

- 38 -

convert

If u•exp" appears, then the expression is used to
weight the cross product matrix. The weight
defined by the expression is normalized to sum to
the number of non-missing observations. Each
observation is multiplied by the square root of the
normalized weight before being added to the cross
product matrix. (Note: the technique used for
weighting does not require the calculation of the
square roots, hence, the numerical inaccuracy
inherent in taking square roots is avoided.)

Some STATA commands are not allowed when the data
set in memory is an xp data set. These are by,
convert, count, expand, if, in, input, merge,
modify, plot, replace, sort, and tabulate. There
are other restrictions as well. Only linear
functions of the existing variables can be
generated . Also , list· displays the cross product
matrix , not the original values of the variables.

convert automatically repartitions memory so the
cross-product matrix will fit (for details see
Appendix B, Memory Management in STATA). It is not
necessary to understand the details if you remember
two rules of thumb. After using convert, if you
are going to use a raw data set, first type:

drop _all
set 11SXVar 99

If you are going to use a cross-product data set
for the first time during a STATA session or after
applying the first rule of thumb, type:

drop _all
---------- set 118XV&r 100 lrecl 800

Even if you do not follow these rules it will
probably not matter; but following them will avoid
error messages when you are dealing with large data
sets. If you choose to ignore them then you may

- 39 -

convert

receive an error message telling you that there is
insufficient space to perform your request, and you
will have to type these suggested statements then.

Output

Summary statistics are displayed for all the
variables in the cross product matrix. This
display is identical to that produced by the
s1D111&rize command.

Options

clear allows the current data set to be converted
even if the data set has been changed during the
current STATA session.

noforaat displays the summary statistics in g
format regardless of the display format
previously specified. The formats used differ
across variable types as follows:

int %8.0g
long %10.0g
float %9.0g
double %10.0g

noaeans suppresses the display of the summary
statistics.

noscale prevents the normalization of the weight.

Example

• use odd.dta
R; T=4.89 14:21:56

• convert, noaeans
(obs=S)
R; T=S.49 14:22:23

- 40 -

• describe
Contains crossproduct (xp)
Vars: 3 (max= 100)

1. _cons double %10.0g
2. number double %9.0g
3. odd double %9.0g

Note: Data bas changed since last save
R; T=l.86 14:22:30

• list

_cons number odd
1. 5. 15. 25.
2. 15. 55. 95.
3. 25. 95. 165.

R; T=2.75 14:22:36

- 41 -

convert

Purpose

[by varlist:] correlate [varlist]
[=-exp] [in range] [if exp]

The correlate command calculates and displays the
correlation matrix for a group of variables. If no
varlist is given, correlate calculates the
correlation matrix for al~ the variables in the
data set.

Remarks

If =exp appears, then the expression is used to
weight the correlation matrix. The weight defined
by the expression is normalized to sum to the
number of non-missing observations. Each
observation is effectively multiplied by the square
root of the normalized weight before the
correlations are calculated.

Output

The correlation matrix is displayed as a lower
triangular matrix. Optionally, summary statistics
for each of the variables can be displayed.

Options

aeans causes summary statistics to be calculated
and displayed for each variable in the
correlation matrix.

- 42 -

correlate

nofonaat displays the summary statistics in g
format regardless of the display format
previously specified. The formats used differ
across variable types as follows:

int %8.0g
long %10.0g
float %9.0g
double %10.0g

noscale suppresses the normalization of the weight.
covariance displays the covariances rather than

correlation coefficients.
_coef displays the correlations between the

coefficients of the last regression.

Example

• drop _all
R; T=0.60 14:46 : 15

• set obs 5
obs was O, now 5
R; T=0.11 14:46:16

• generate nuaber • _n - 3
R; T=2.74 14:46:19

• generate square• nuaber * nuaber
R; T=l.65 14:46:23

• generate newvar • 5*nuaber - square/3
R; T=l.93 14:46:27

- 43 -

correlate

. list

number
1. -2.
2. -1.
3. o.
4. 1.

square
4.
1.
o.
1.

s. 2. 4.
R; T=S.33 14:46:35

• correlate
(obs=S)

newvar
-11.33333
-5.333333

o.
4.666667
8.666667

number square newvar
--------+---------------------------

number I 1.0000
square! 0.0000 1~0000
newvarl 0.9969 -0.0786 1.0000

R; T=6.70 14:46:45

- 44 -

[by varlist :] count [in range] [if exp]

Purpose

The count command counts the number of observations
that satisfy the specified conditions. If no
conditions are specified, count displays the number
of observations in the data set.

Example

• use hoel.dta
(Data for Hoel's textbook)

~ R; T=2.91 20: 26: 37

• count
12

R; T=0.66 20:26:45

. by educ: count if number>30

-> educ= College 2
-> educ= H.S. 1
-> educ= < H.S. 0
R·
'

T=l .48 20: 26: 47

- 45 -

describe [{varlist I using filename}]

Purpose

The describe command produces a summary of the
contents of a STATA format data set.

Remarks

If describe is typed w~thout any operands, then the
contents of the current STATA data set are
summarized. This summary includes some general
information and a description of every variable in

~

the data set. If a varlist is specified, the ----.,
general information is omitted, and only the
variables in the varlist are described. If "using
filename" is specified, then the contents of the
disk data set "filename" are summarized.
"filename" must be in STATA format, that is, it
must have been created by the save command. If
"filename" is specified without an extension,
".dta" is assumed.

Output

In the first line of the display, the data set type
(data or xp) is indicated. If the data set is
labeled, the label is also displayed on the first
line. Next, the current and maximum allowed
numbers of observations and variables are listed.
A description of the variables follows.

For each variable, the name is listed followed by
its type (int, long, float, or double) and display

- 46 -

describe

format . If the variable is associated with a set
of value labels, the name of the value label list
is displayed after the display format. (In the
example below, the variables "marriage" and "educ"
are associated with the value label lists •~arlbl"
and "edlbl ", respectively.) The variable label, if
any ,. is displayed on the far right.

Two additional general items are displayed. The
sort order is listed, and, if the data set has
changed since it was used, this fact is noted.

Options

short causes STATA to suppress the information on
each variable. Only the general information is
displayed .

- 47 -

,l:l-
00

ExamJ?,le

• use hoel.clta
(Data from Hoel's textbook)
R; T=0.55 13:04:19

• describe
Contains data

Obs: 12 (max= 151)
Vars: 3 (max= 100)

1. marriage float %9.0g
2. educ float %9.0g
3. number float %9.0g

Sorted by: educ marriage
R; T=l.10 13:04:21

• describe aarriage nuaber
1. marriage float %9.0g
3. number float %9.0g

R; T•0.44 13:04:21

marlbl
edlbl

marlbl

)

Data from Hoel's textbook

Marriage-adjustment score
Level of education
Number of cases

Marriage-adjustment score
Number of cases

)

~
ct • n
r

,i:-.

"°
I

)

• convert
(obs=l2)
Varname I Mean Std. Dev. Min. Max.
--------+--
marriage I 2.5 1.167748 1. 4.

educ I 2. .8528029 1. 3.
number I 33.33333 30.67819 10. 115.

R; T=2.96 13:04:24

• describe

)

Contains crossproduct (xp) Data from Hoel's textbook
Vars: 4 (max= 100)

1. _cons double %10.0g
2. marriage double %9.0g
3. educ double %9.0g
4. number double %9.0g

Note: Data has changed since last save
R; T=l.15 13:04:26

Marriage-adjustment score
Level of education
Number of cases

~
ID • n
"1 ~· r

V,
0

• drop _all
R; T=0.11 13:04:26

• describe
Contains data
Obs: 0 (max~

Vars: 0 (max=
Sorted by:
R; T=0.55 13:04:27

151)
100)

• describe using hoel.dta
Contains data
Obs: 12 Var: 3

1. marriage float
2. educ float
3. number float

Sorted by: educ marriage
R; T=l.16 13:04:28

%9.0g
%9.0g
%9.0g

marlbl
edlbl

)

Data from Hoel's textbook

Marriage-adjustment score
Level of education
Number of cases

)

0.
CD • n
l'1
r

~

dir DOS_file_specification

Purpose

The dir command is the STATA equivalent of the DOS
DIR command. It displays the names of the files in
a directory.

Remarks

There are two differences between the STATA and the
DOS dir commands. First, the DOS /P option is
unnecessary; STATA always pauses when the screen is
full. Second, you must include a file
specification when using the dir command. To see
all the files in a directory, give the command

dir *•*

Output

The output of the STATA dir command is roughly the
same as that produced by the DOS DIR command.

Options

wide produces the same effect as specifying /W with
the DOS DIR command: four filenames, rather than
one, are displayed on each line.

- 51 -

dir

Example

• dir *.doc

RCORREL.DOC 2.5k
RA.PPEND.DOC 1.8k
RDELIM.DOC 0.9k
RBEEP.DOC 0.5k
RCONVERT.DOC 4.4k
RBY.DOC 3.0k
RIF.DOC 1.8k
RIN.DOC 1.7k
RCOUNT.DOC 1.6k
RDES.DOC 3.9k
R; T=l.82 13:33:47

8/ 10/ 84 18: 35
8/10/84 17:56
8/10/84 17:54
8/ 10/ 84 17: 59
8/10/84 18:34
8/10/84 19:19
8/10/84 19:37
8/10/84 19:37
8/10/84 20:29
8/12/84 13:25

- 52 -

discard

Purpose

The discard command eliminates information stored
by the most recent regress command. It makes more
space available for adding data to the current data
set. Note that the test command and the regress
command without operands will not work after a
discard. In addition, the contents of _pred and
_coef are destroyed by the discard command.

Remarks

You will rarely, if ever, need this command. Use
discard after the message "Insufficient memory" if
you are willing to part with previous regression
results.

- 53 -

display [[=exp I "string"]
[, [•exp I "string"] [, •••]]] [if exp]

Purpose

The display command displays strings and/or the
values of scalar expressions.

Remarks

This command combines the functions of an
electronic calculator wit·h the ability to label
results. STATA variables may appear in the
expression. If these variables are not explicitly
subscripted, their values for the first observation
are used.

Output

The value of any expression is displayed as a
floating point number.

Example

• display-= 5
5.

R; T=0.83 14:09:00

• display• 5/3
1.6666667

R; T=0.16 14:09:06

- 54 -

• display= int(5/3)
1.

R; T=0.16 14:09:15

• display• sqrt(2)
1.4142136

R; T=l.27 14:09:27

• use odd.dta
R; T=4.89 14:08:38

• display• odd[4] - nuaber[4]
3.

R; T=0.83 14:09:58

• display.., odd
1.

R; T=0.11 14:10:05

~ . display "2+2 is•• =2+2
2+2 is 4
R; T=0.44 14:11:01

- 55 -

display

do filename [parameter_list]

Purpose

The do command causes a disk file containing STATA
commands to be executed. The commands in
"filename" are executed as though they were
currently being typed. The disk file is called the
"do-file". If no extension is specified with the
filename, ".do" is assumed.

Remarks

The name of the disk file may be followed by up to
20 parameters. In the do-file, these parameters
can be referenced by the macro names _l through
_20, where _n refers to then-th parameter in the
typed list. These macro names replace the current
_l through _20, if they are defined. The current
_l through _20 are restored when the execution of
the do-file is completed. In fact, all macros that
begin with the underscore character(_) are local
to a do-file, that is, their previous definitions
are ignored during the execution of the do-file.
At the termination of the do-file, these previous
definitions are all restored.

A do-file completes execution when (1) the end of
the file is reached, (2) an exit is executed, or
(3) when an error (non-zero return code) occurs.
In the last case, the remaining commands in the do
file are abandoned. If STATA senses a Ctrl-Break
typed at the keyboard it responds as though an
error occurred. Thus, do-files can be interrupted.

- 56 -

~

do

Do-files operate on the current data set. If a do
file terminates as the result of an error, you
should describe the current data set to be sure
that the do-file did not "leave behind" any
temporary variables.

A do-file can contain do commands; that is, do
files can be nested. STATA will not allow do-files
to be nested more than five deep.

Output

The commands inside the do-file produce their usual
output. At the completion of a do-file, the
message "end of do f.ile" and a return message are
displayed. The time reported in this return
message is the execution time for the complete do
file.

Options

delay causes the commands in the do-file to be
displayed at a slower speed than normal. This
allows them to be read before they are executed.
The output produced by each command is displayed
at its normal speed.

nostop causes STATA to ignore non-zero return codes
during the execution of a do-file; that is, a
non-zero return code will not terminate the
execution of a do-file if nostop is specified.

Example

• type load.do
use hoel.dta
count if number>18

R; T=0.66 14:17:11

- 57 -

do

• do load

• use hoel.dta
(Data from Roel's textbook)
R; T=0.55 14:17:14

• count if number>l8
7

R; T=0.72 13:01:28

end of do file
R; T=2.10 14:17:18

- 58 -

,.,.......____

,.,.......____

drop varlist

[by varlist:)

[by varlist:)

Purpose

drop

drop

in range [if exp)

if exp [in range)

The drop command eliminates variables or
observations from the current data set. drop may
not be abbreviated.

Remarks

The entire data set can be cleared by typing drop
_all. Value labels and macros are unaffected by
the drop command. (See label drop _all and aacro
drop _all.)

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=0.55 14:45:11

• drop aarriage
R; T=0.22 14:45:16

• drop in 3/7
(5 observations deleted)
R; T=0.17 14:45:18

- 59 -

drop

• list

educ
1. College
2. College
3. H. S.
4. < H.S.
5. < H.S.
6. <H.S.
7. < H.S.

R; T=l.43 14:45:19

• drop _all
R; T=0.17 14:45:20

. describe
Contains data

number
18.
29.
41.
11.
10.
11.
20.

Obs: 0 (max"' 605)
Vars: 0 (max= 100)
Sorted by:
R; T=0.55 14:45:21

- 60 -

~

erlt [if exp]

Purpose

The exit command causes STATA to terminate
processing and return control to DOS. If the data
set in memory has changed since the last save
command, you must specify the clear option before
STATA will allow you to exit.

exit is also used to ·stop a do-file and return
control to the caller whether that be a previous
do-file or the keyboard.

Options

clear permits you to exit even if the current data
set has not been saved.

Example

• exit
No - data in memory would be lost
R(4) ; T=O.39 10:19:21

• exit, clear

A>

- 61 -

expand •exp [ia range] [if exp]

Purpose

The expand command replaces each observation in the
current data set with n copies of the observation,
where "n" is equal to the integer part of the
required expression. If the expression is less
than one (1.0) or equal to missing value, then it
is interpreted as if it were one and the
observation is retained. but not duplicated.

Remarks

If there is not enough memory available to expand
the data set, a warning message is displayed and
the data set remains in its original form.

Output

The number of observations added to the data set is
displayed.

Options

clear permits the data set to be expanded even if
the data set has changed during the current
STATA session.

- 62 -

~

~

Example

• ase hoel.dta
R; T=6.76 15:58:48

• tabulate educ• uuaber
educ! Freq. Percent Cum.

-----------+-----------------------
College I 232 58.00 58.00

H.S. I 116 29.00 87.00
< H.S. I 52 13.00 100.00

-----------+-----------------------
Total I 400 100.00

R; T=2.36 15:59:18

• expaBCl • uuaber
(388 observations created)
R; T=5.38 15:59:30

• describe
Contains data

Obs: 400 (max= 721)
Vars: 3 (max= 99)

1. marriage float %9.0g marlbl
2. educ float %9.0g edlbl
3. number float %9.0g

Sorted by: educ marriage
Note: Data has changed since last save
R; T=2.47 15:59:35

• tabulate educ
educ! Freq. Percent Cum.

-----------+-----------------------
College I 232 58.00 58.00

H.S. I 116 29.00 87 .oo
< H.S. I 52 13.00 100.00

-----------+-----------------------
Total I 400 100.00

R; T=2.81 15:59:52

- 63 -

expaBCl

foraat varlist %fmt

Purpose

The foraat command allows you to specify the
display format of variables in the current data
set. The internal precision of the variables is
unaffected.

Remarks

Formats are denoted by a leading percent sign(%)
followed by the string "I.I", where I stands for an
integer. The first integer specifies the width of

~

the format. The second integer, which must be less ~
than or equal to the first, specifies the number of
digits that are to follow the decimal point. A
character denoting the format type (e, f, or g) is
then listed. As an example, the string %9.2£
specifies an f format that is nine characters wide
and has two digits following the decimal point.

By default, every variable is given a %1.0g format,
where# is large enough to display the largest
number of the variable's type. The g format is
really a complicated set of formatting rules that
attempts to present values in as readable a fashion
as possible without sacrificing precision. The g
format changes the number of decimal places
displayed whenever it improves the readability of
the current value. The number after the decimal ~
point specifies the minimum number of digits that
are to follow the decimal point. For instance, the
number 1.1 would be displayed as "1.1" in %9.0g and
%9.lg, and as "1.10" in %9.2g.

- 64 -

~

fora,it

Under the STATA f format, values are always
displayed with the same number of decimal places,
even if this causes a loss in (the displayed)
precision. Thus, the f format is similar to the
FORTRAN F format. The only difference is that the
width of the STATA f format is temporarily
increased whenever a number is too large to be
displayed in the specified format.

Thee format is similar to the FORTRAN E format.
Every value is displayed as a leading digit (with a
minus sign, if necessary) followed by a decimal
point, the specified number of digits, the letter
"E", a plus or minus sign, and the power of ten
(modified by the preceding sign) that multiplies
the displayed value. When thee format is
specified, the width must exceed the number of
digits that follow the decimal point by at least
seven. This space is needed to accommodate the
leading sign and digit, the decimal point, the "E",
and the signed power of ten.

Example

• describe
Contains data

Obs: 0 (max= 605)
Vars: 0 (max= 100)
Sorted by:
R; T=0.49 14:56:58

• set obs 5
obs was O , now 5
R; T=0.11 14:56:58

• generate e_fat•sqrt(7.85*_n)*(l+(999999*
(_n==2))+(-1.00000l*(_n--4)))

R; T=l.21 14:57:00

- 65 -

foraat

• generate f_fat • e_fat
R; T=0.16 14:57:01

• generate Lfat • e_fat
R; T=0.17 14:57:01

• foraat e_fat %9.2e
R; T=0.05 14:57:01

• foraat £_fat %9.2£
R; T=0.11 14:57:02

• deacribe
Contains data

Obs: 5 (max= 605)
Vars: 3 (max= 100)

1. e_fmt
2. f_fmt
3. g_fmt

Sorted by:

float %9.2e
float %9.2f
float %9.0g

Note: Data has changed
R; T=0.99 14:57:03

since last save

• list

e_fmt
1. 2 .80E+OO
2. 3 .96E+06
3. 4.85E+OO
4. -5.60E-06
5. 6 .26E+OO

f_fmt g_fmt
2 .80 2.801785

3962322 .50 3962323.
4.85 4.852834

-0.00 -5.60E-06
6.26 6.264982

R; T=l.54 14:57:05

- 66 -

~

~

[by varlist:] generate newvar s exp
[in range] [if exp]

Purpose

The generate command creates a new STATA variable.
The values of the variable are specified by "=exp".

Remarks

The generate command cannot be used to change the
values of an existing .variable. Use the replace
command for this purpose.

Note that "newvar" can be specified as

[type] new_varname[:label_name]

where "type" is int, long, float, or double. If no
type is specified, then float is assumed (or the
type specified in the set type command). The
opt i onal ":label_name" associates a value label
with the new variable. This value label need not
be defined at the time the generate command is
given .

Output

If any missing values are generated, the number
generated are displayed . If no message is
presented, then no missing values were produced.

- 67 -

generate

Example

• describe
Contains data

Obs: 0 (max= 605)
Vars: 0 (max~ 100)
Sorted by:
R; T=0.44 15:39:04

• set obs 5
obs was 0, now 5
R; T=0.17 15:39:04

• generate varl = _n
R; T=0.22 15:39:04

• generate var2 = 15.88*sqrt(varl)/_ll
R; T=0.71 15:39:05

• list

varl var2
1. 1. 3.176
2. 2. 4.491542
3. 3. 5.500993
4. 4. 6.352
5. 5. 7.101752

R; T=l.15 15:39:07

- 68 -

help [command name]

Purpose

The help command displays help information on the
specified command or topic. If help is not
followed by a command or topic name, the list of
topics for which help is available is listed.

Remarks

Unless you have previously given the command set
help filename, the file STATA.HLP must be in the
current directory or the help command will not
work . Users short on disk space may delete
STATA. HLP .

Output

The help information starts with a syntax diagram
of the specified command. If the command takes any
options, they are listed. A brief description of
the purpose of the command is also displayed.

- 69 -

STATA_command if exp

Purpose

The if exp qualifier restricts the scope of a STATA
command to those observations for which the value
of "exp" is non-zero. "exp" may be any STATA
expression.

Remarks

if may not be used with xp data sets.

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=S.16 19:27:08

• list nuaber if aarriage-educ

number
1. 18.
6. 28.

11. 11.
R; T=l.64 19:27:23

• list if nuaber>48, nolabel

marriage educ number
3. 3. 1. 70.
4. 4. 1. 115.
8. 4. 2. 41.

R; T=O .88 19: 27: 26

- 70 -

STATA_command in range

Purpose

The in range qualifier restricts the scope of a
STATA command to the observations specified by
"range".

Remarks

A STATA range specification takes the form #1(/#2]
where 11 and #2 are integers such that #1 is less
than or equal to #2. The first and last

~ observations in the data set may be denoted by f
and 1 (letter ell), respectively. A range
specifies absolute observation numbers within a
data set. As a result, the in modifier cannot be
used when a command is preceded by the "by
varl ist:" pref ix.

in may not be used with xp data sets.

Example

• use oclcl.clta
R; T=S.00 19:33:34

- 71 -

in

• lis t in f/1

number
1. 1.
2. 2.
3. 3.
4. 4.

odd
1.
3.
5.
7.

5. 5. 9.
R; T=l.43 19:33:45

• list in 3

number odd
3. 3. 5.

R; T=0.93 19:33:50

• su.aarize in 3/1

varnamel Obs Mean Std. Dev. Min. Max.
--------+------------------------------------

number I 3 4. 1. 3 5.
oddl 3 7. 2. 5. 9.

R; T=2.26 19:33:57

- 72 -

"\

"\

infile varlist
[_skip[(#}] [varlist [_skip[(#}] ... ll l

using filename [in range] [if exp]

Purpose

The infile command reads into memory a disk data
set that is not in STATA format. The data can then
be saved as a STATA format data set. The original
disk data set is unchanged. If ''filename" is
specified without an extension, ".raw" is assumed.

Remarks

There must not be a data set already in memory when
the infile command is given.

The non-STATA disk data set must either be in free
format or comma-separated-value format. In free
format, data are separated by one or more "white
space" characters. White space characters are
blanks, tabs, or "newlines" (carriage return/line
feed combinations). Missing values are indicated
by single periods(.). In comma-separated-value
format, data are separated by commas. You may
intermix comma-separated-value and free format.
Missing values may also be indicated by multiple
commas which serve as place holders. In either
format, a single observation can span any number of
input lines. String variables may be enclosed in
single or double quotes. If the string contains
imbedded white space or any characters besides
letters, digits, and underscore, it must be
enclosed in one or other type of quotes.

- 73 -

infile

All the variables specified in the infile command
are new variables, that is, they are created by the
infile command. The syntax for a new variable is

[type] new_varname[:label_name]

By default, variables created by infile are of type
float. This default can be overridden by preceding
the variable name with a type name (int, long,
float, or double), or by the set type command.

A list of variables placed in parentheses will be
given the same type. For example,

double (first_var second_var ••• last_var)

causes "first_var second_var
be type double.

last_var" to all

~

There is also a shorthand syntax for variable names ~
with numeric suffixes. For example, the varlist

varl--var4

is equivalent to specifying

varl var2 var3 var4

The infile command can handle non-numeric data in
several ways. If the non-numeric data are
unexpected, then a warning message is issued and
the variable is set to missing value for that
observation. infile can be directed to expect non
numeric data by typing a colon(:) and the name of
a value label after the variable name and
optionally including the autOll8tic option. (See
the description of the label command for an
explanation of value labels.) For example, the
command

infile varname:lblname using diskfile

- 74 -

infile

causes infile to assign values to varname based on
the value labels stored under the name "lblname".
(If some or all of the observations contain
numerical values, they are stored in the usual
way.) The label modifier may be combined with the
range notation and the type modifier, so that

long varl-var4:lblname

is equivalent to specifying

long varl:lblname ••• long var4:lblname

Value labels can also be created by infile. The
command

infile varnaae:lblnaae using diakfile. autoaatic

causes infile to assign an integer to each unique
---------- string it reads. The resulting value label is

stored under the name "lblname".

Specifying _skip as a variable name directs STATA
to ignore the variable in that location, that is ,
it is not added to the data set being created in
memory . This feature makes it possible to extract
manageable subsets from large disk data sets. A
number of contiguous variables can be skipped by
specifying _skip(#) as a variable name, where# is
the number of variables to ignore.

Subsets of observations can be extracted by
specifying an "if exp". It is important to
remember that the system variables _n and _R refer
to the observation number and sample size,
respectively, of the data set in memory - not of
the disk data set . Use the "in range" modifier to
refer to observation numbers within the disk data
set.

- 75 -

infile

Options

autoaatic causes STATA to create value labels from
the non-numeric data it reads.

byvariable(#) specifies that the external data file
is organized by variables rather than by
observations. In other words, all the
observations on the first variable appear, then
all the observations on the second variable, and
so on. infile needs to know the number of
observations in order to read the data properly.
You specify the number in the parentheses
following byvariable. Alternatively, you can
mark the end of one variable's data and the
beginning of another's by placing a
semicolon(;) in the raw data file. You may
then specify a number larger than the number of
observations in the data set and leave it to
infile to figure out how many observations there
really are. This method can also be used to
read unbalanced data.

Example

• type oddeven.rav
1 2
3 4
5 6
7 8
9 10

R; T=0.66 11:45:32

• infile odd even using oddeyen.rav
(5 observations read)
R; T=0.76 11:45:33

- 76 -

~

• describe
Contains data

Obs: 5 (max= 605)
Vars: 2 (max= 100)

1. odd float %9.0g
2. even float %9.0g

Sorted by:
Note: Data bas changed since last save
R; T=0.99 11:45:34

• list

odd even
1. 1. .. 2.
2. 3. 4.
3. 5. 6.
4. 7. 8.
5. 9. 10.

R· , T=l.15 11:45:36

- 77 -

infile

input [varlist]

Purpose

The input command allows you to type data directly
into the data set in memory.

Remarks

After the input command is entered, STATA lists the
variable names in the order in which they are to be
entered. Then STATA prompts you with observation
numbers. You must respond by typing a list of
values, one for each variable. Missing values may
be indicated with a period(.). You may terminate
data entry at any time by typing end in response to
the observation number prompt.

If there are no data in memory when you enter the
input command, or if you type input without a
varlist, STATA will prompt you for new observations
until you type end. If you are adding a new
variable or variables to the current data set,
STATA will automatically terminate data entry when
you have entered values for as many observations as
are in the current data set.

STATA bas a very flexible syntax for specifying new
variables and lists of new variables. See the
description of the infile command for a complete
explanation of this syntax.

By default, variables created by input are of type
float (or of the type specified by set type if you
have changed it). This default can be overridden

- 78 -

~

input

by preceding the variable name (or bound list of
variable names) with a type name (int, long, float,
or double).

If a variable name is followed by a colon(:) and
the name of a value label, the value label is
associated with the variable. (This feature is
explained in detail in the description of the
infile command.) If the label option is specified,
the value labels may be typed instead of the
values. If the autoaatic option is specified, then
value labels are created as the data are typed.

Options

autoaatic causes STATA to create value labels as
non-numeric data are· typed.

label allows you to type the value labels instead
~ of the values for variables associated with a

value label name.

Example

• drop _all
R; T=0.55 12:31:14

• input nuaber odd

number
1. 1 1
2. 2 3
3. 3 5
4. end

'\ R; T=l4.77 12:31:36

- 79 -

input

• input even

even
1. 2
2. 4
3. 6

R; T=4.23 12:31:42

• input

number
4. 4 7 8
s. 5 9 10
6. end

R; T=l0.17 12:31:55

. list

number
1. 1.
2. 2.
3. 3.
4. 4.
s. s.

R• , T=l.37 12: 31: 57

odd even

odd even
1. 2.
3. 4.
5. 6.
7. 8.
9. 10.

- 80 -

~

label labe l_command

"label_command" can be any of the following:

"label 11 data
define
dir
drop
list

label_name # "label" [# "label" •••]

list of label_names
list of label_names
list of label_names using

varname label_name
save
values
variable varname "label"

Purpose

filename

The label command is a collection of functions that
define, list, associate, and drop labels for data
sets, variables, and the values of variables.

Remarks

There are three kinds of STATA labels: data labels,
variable labels, and value labels. Data labels are
32 character (maximum) labels that are assigned to
STATA data sets. They are displayed whenever a
labeled data set is used or described. To assign a
label t o a data set, enter the command

label data "label"

Note t hat only labels with imbedded "white space"
or non-alphabetic and numeric characters (such as
"+") need to be enclosed with double quotes. The
white space characters are blanks, tabs, or

- 81 -

label

"newlines'' (carriage return/ line feed
combinations) •

Variable labels are 32 character (maximum) labels ~
that are associated with particular variables.
These labels are displayed whenever the variable is
described and are used by various other commands to
label output. To assign a label to a variable,
enter the command

label variable varname "label"

A value label is a list of up to 255 labels each of
which is associated with a numeric value, which
must be an integer. To define a value label, enter
the command

label define label_name #"label"[# "label" •••]

Value label names follow the same naming
conventions as STATA variable names.

Value labels have no effect until they are
associated with a variable or variables. To
associate a value label with a variable, enter the
command

label values varname label_name

(Although only integer values may be labeled, the
variable need not be stored as an int.) Once a
value label is associated with a variable, the
labels are displayed instead of the numeric values
in all STATA output. If an observation contains a
value for which no label is defined, then the value
is displayed. The same list of value labels may be
associated with more than one variable. If a list
of value labels is associated with a variable, then
the label_name appears just before the variable
label in the describe output.

- 82 -

label

The label_names of all currently defined value
labels can be displayed by entering the command

label dir

The contents of value label lists (the numeric
codes and associated labels) can be displayed by
entering the command

label list list of label_names

Value labels that are no longer needed can be
eliminated by entering the command

label drop list of label_names

If the name _all appears in place of a list of
label names, then the label list or label drop
command operates on all the value labels that are

~ currently defined.

,,........____

Labels are automatically stored with your data set
when you save it. Conversely, the use command
drops all labels before it loads a new data set.
You may occasionally wish to move a value label
from one data set to another. You can do this
typing:

label save list of label names using filename

which creates a do-file containing a label define
command for each lab9l in the list. If you do not
specify an extension on the filename, ".do" will be
assumed. You can then use the data set to which
you wish to add the label(s), and do filename.

All labels are stored in the same area of memory as
the data set. As labels are added, STATA silently
readjusts the maximum number of observations that
can be loaded. As a result, it is good practice to
drop unused value labels. Also, describe your data

- 83 -

label

set occasionally to make sure there is sufficient
space available before increasing the number of
observations.

Example

• drop _all
R; T=0.55 12:37:19

• input odd even

odd even
1. 1 2
2. 3 4
3. 5 6
4. 7 8
5. 9 10
6. end

R; T=l.04 12:37:21

• describe
Contains data

Obs: 5 (max=
Vars: 2 (max=

1. odd
2. even

Sorted by:

605)
100)

float
float

%9.0g
%9.0g

Note: Data has changed
R; T=0.88 12:37:22

since last save

. list

1.
2.
3.
4.
5.

R; T=l.05

odd
1.
3.
5.
7 .
9.

12:37:23

even
2.
4.
6.
8.

10.

- 84 -

• label data "Odd and even nuabers•
R; T=0.06 12:37:24

~ • label variable odd •Odd nuabera•
R; T=0.05 12:37:24

• label variable even "Even nuabera•
R; T=0.06 12:37:24

• label dir
R; T=0.11 12:37:25

- 85 -

label

00 a-

• label define oddlbl 1 •0ne• 3 "rhree• 5 "Five• 7 •seven• 9 -.ine•
R; T=0.11 12:37:25

• label define evenlbl 2 "rvo• 4 "Four• 6 •su• 8 "Eight• 10 "Ten•
R; T=0.17 12:37:26

• label dir
evenlbl
oddlbl
R; T=0.22 12:37:27

• label values odd oddlbl
R; T=0.06 12:37:27

• label values even evenlbl
R; Ta0.11 12:37:27

))

~ r
~

00
-..J

I

)

• describe
Contains data
Obs: 5 (max=

Vars: 2 (max=
1. odd
2. even

Sorted by:

604)
100)

float
float

%9.0g
%9 .0g

)

oddlbl
evenlbl

Note: Data has changed
R; T=0.99 12:37:28

since last save

• list

odd even
1. One Tllo
2. Three Four
3. Five Six
4. Seven Eight
5. Nine Ten

R; T=l.05 12:37:30

Odd and even numbers

Odd numbers
Even numbers

)

,...
r ,...

00
00

• label drop oddlbl
R; T=0.16 12:37:30

• label dir
evenlbl
R; T=0.16 12:37:31

• describe
Contains data

Obs: 5 (max= 604)
Vars: 2 (max= 100)

1. odd float
2. even float

Sorted by:
Note: Data has changed
R; T=0.99 12:37:32

)

%9.0g
%9.0g

oddlbl
evenlbl

since last save

)

Odd and even numbers

Odd numbers
Even numbers

)

.... .. r

• list

1.
odd
1.

2. 3.
3. 5.
4. 7.
s. 9.

R; T=l.10 12:37:33

even
Two

Four
Six

Eight
Ten

- 89 -

label

Purpose

[by varlist:] list [varlist]
[in range] [if exp]

The list command displays the values of variables
in the current data set. If no varlist is
specified, then the values of all the variables are
displayed.

Output

The names of the specified variables are displayed
across the top of the screen. The values are
displayed under the variable names and the
observation number is displayed at the far left of
the screen.

Options

nolabel causes the numeric codes to be displayed
rather than the value labels.

noobs suppresses the printing of observation
numbers.

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=0.55 12:39:06

- 90 -

~

~

~

• list

marriage
1. Very Low
2. Low
3. High
4. Vry High
5. Very Low
6. Low
7. High
8. Vry High
9. Very Low

10. Low
11. High
12. Vry High

R; T=2.75 12:39:13

• list, nolabel

marriage
1. 1.
2. 2.
3. 3.
4. 4.
5. 1.
6. 2.
7. 3.
8. 4.
9. 1.

10. 2.
11. 3.
12. 4.

R; T=2.92 12:39:21

educ
College
College
College
College

H.S.
H.S.
H.S.
H.S.

< H.S.
< H.S.
< H.S.
< H.S.

educ
1.
1.
1.
1.
2.
2.
2.
2.
3.
3.
3.
3.

number
18.
29.
70.

115.
17.
28.
30.
41.
11.
10.
11.
20.

number
18.
29.
70.

115.
17.
28.
30.
41.
11.
10.
11.
20.

• by educ: list nuaber if n'Ullber>30, noobs

-> educ= College
number

70.
115.

- 91 -

list

list

-> educ= H.S.
number

41.

-> educ= < H.S.
number

R· , T=l .70 12:39:54

- 92 -

~

'\

macro macro_command

"macro_command" can be any of the following:

Purpose

define
dir
drop
list

macro_name "string"

list of macro_names
list of macro_names

The aacro command assigns strings to designated
macro names. Before executing any STATA commands,
all macro names are replaced with their associated
strings.

Remarks

A STATA macro is a name that has been associated
with a string using the STATA aacro command. The
rules for naming macros are identical to the rules
for naming variables. When a macro name is
referenced, it must be preceded by a percent sign
(%). For example:

macro define wmaae "string"

followed by the command

••• %111181le

will cause STATA to execute the command

••• string ...

- 93 -

macro

Macros may be indirectly referenced. For instance,
if the macro iname contains "mname", and the macro
mname contains ''string", then " ••• %%iname ••• " is
interpreted as " ••• string ••• ". The results of
macro substitution may be joined with the following
text using the join character forward single quote
('). If the macro drive contains "b:" then

••• %drive'ayfile.dta

is interpreted as

b:myfile.dta •••

The aacro command can also associate a string with
one of the ten function keys (labeled "Fl" through
"FlO"). The variables _l through _10 implicitly
refer to the function keys. Thus, the macro
command

aacro define _l -rb.ia is key l'l"

will cause the string "This is key Fl" (without the
double quotes) to be typed every time the Fl
function key is pressed. Names of the form"_#"
where "I" is an integer greater than ten can also
be defined as macros . However, these macros are
not associated with any keys on the keyboard.

In a do-file, variables of the form"_#" are
interpreted as parameters of the do command. For
example, if a do-file is executed with the command

do do-file_name wordl word2 word3

then, during the execution of the do-file, %_1 is
replaced with wordl, %_2 is replaced with word2,
and so on. All macros that begin with an
underscore(_) are local to a do-file in that their
meanings inside the do-file are independent of
their definition outside the do-file. The original

- 94 -

aacro

definitions of all "_" macros are restored at the
completion of the do-file.

~ In the aacro drop and aacro list commands, the word
_all can be used in place of the list of macro
names to indicate that the command should operate
on all currently defined macros.

~

Example

• aacro define usehoel "use hoel.dta, clear"
R; T=2.86 14:13:02

• aacro list
usehoel: use hoel.dta, clear
R; T=2.09 14:13:07

• %usehoel
(Data from Hoel's textbook)
R; T=6.48 14:13:15

. macro drop usehoel
R; T=2.80 14:13:21

• macro list
R; T=l.81 14:13:25

• type c01111&Dd.do
%command %_1 %_2, %_3

• aacro define coaaaad "tabulate"
R; T=2.75 14:13:39

- 95 -

aacro

• do COllll&Dd.do aarriage

• %command %_1 %_2, %_3
marriage I Freq. Percent Cum.

------------+-----------------------------------
Very Low 3 25.00 25.00

Low 3 25.00 50.00
High 3 25.00 75.00

Vry High 3 25.00 100.00
------------+-----------------------------------

Total I 12 100.00
R; T=5.39 14:13:53

end of do file
R; T=l6.20 14:13:57

- % -

~

aerge [varlist) using filename

Purpose

The aerge command joins corresponding observations
from the data set currently in memory (called the
"master" data set) and from a STATA format data set
stored on disk (called the "using" data set) into
single observations. If the using filename is
specified without an extension, ".dta" is assumed.
The data set that re~ults from merge replaces the
master data set. The using data set is not
changed.

Remarks

The using data set must be a STATA format data set,
that is, it must have been created with the save
command. If the file was encoded, the current
encoding key must be set appropriately (see set
encode for details).

Two kinds of merges can be performed. If no
varlist is specified, a one-to-one merge is
performed. If a varlist is specified, a match
merge is performed.

In a one-to-one merge, the first observation in the
master data set is joined with the first
observation in the using data set, the second
observation in the master data set is joined with
the second observation in the using data set, and
so on. If a variable name occurs in both the
master and the using data sets, the joined
observation takes the variable's value from the

- 97 -

merge

master data set. When the master and using data
sets contain different numbers of observations,
missing values are joined with the remaining
observations from the longer data set.

In a match-merge, observations are joined if the
values of the variables in the varlist are the
same. To perform a match-merge, all variables in
the varlist must appear in both the master and the
using data set. In addition, both data sets must
be sorted in the order of the varlist.

A match-merge proceeds by taking an observation
from the master data set and one from the using
data set and comparing the values of the variables
in the varlist. If the varlist values match, then
the observations are joined in the same way as in a
one-to-one merge.

If the varlist values do not match, the observation
from the "earlier data set" (the data set whose
varlist value comes first in the sort order) is
joined with a pseudo-observation from the "later
data set" (the other data set). All the variables
in the pseudo-observation contain missing values.
The actual observation from the later data set is
retained and compared to the next observation in
the earlier data set.

The master and/or using data sets may have multiple
observations with the same varlist value. These
multiple observations are joined sequentially, as
in a one-to-one merge. If the data sets have an
unequal number of observations with the same
varlist value, the last such observation in the
"shorter" data set is replicated until the number
of observations is equal.

- 98 -

aerge

The aerge command adds a new variable, called
_aerge, to the master data set. This variable is

~ coded according to the table below.

~

1. This observation occurred only in the master
data set.

2. This observation occurred only in the using
data set.

3. This observation is the result of joining an
observation from the master data set with one
from the using data set.

Options

nolabel prevents copying of labels from the disk
data set into the current data set.

Example

• use aergel.dta. clear
(Merge data #1)
R·
'

T=6.38 14:50:45

. list

odd even negodd
1. 1. 2. -1.
2. 3. 4. -3.
3. 5. 6. -5.
4. 7. 8. -7.
5. 9. 10. -9.

R; T=3.96 14:50:51

• use aerge2.dta. clear
(Merge data #2)
R; T=6.71 14:51:00

- 99 -

aerge

• list

odd
1. 7.
2. 9.
3. 11.
4. 13.

R; T=4.45 14:51:07

even
8.

10.
12.
14.

• use aergel.dta. clear
(Merge data #1)
R; T=6.42 14:51:20

• merge odd using aerge2.dta
R; T=5.55 14:51:28

• list

odd even negodd
1. 1. 2. -1.
2. 3. 4. -3.
3. 5. 6. -5.
4. 7. 8. -7.
5. 9. 10. -9.
6. 11. 12. .
7. 13. 14. .

R· , T=5.77 14:51:36

. use aergel .dta 9 clear
(Merge data #1)
R· , T=6 .60 14:51:48

• aerge using aerge2.dta
R· , T=5.50 14:51:55

. list

odd even negodd
1. 1. 2. -1.
2. 3. 4. -3.
3. 5. 6. -5.

- 100 -

negeven
-8.

-10.
-12.
-14.

negeven _merge
1. . 1.
1.

-8. 3.
-10. 3.
-12. 2 •
-14. 2 •

negeven _merge
-8. 3.

-10. 3.
-12. 3.

merge

4. 7. 8. -7. -14. 3.
s. 9. 10. -9. 1.

~ R· , T=S.17 14:52:03

. use aerge2.dta, clear
(Merge data #2)
R• , T=6.81 14:52:12

• aerge odd using aergel.dta
R· , T=S.50 14 :52:20

. list

odd even negeven negodd _merge
1. 7. 8. -8. -7. 3.
2. 9. 10. -10. -9. 3.
3. 11. 12. -12. . 1.
4. 13. 14. -14. . 1 •
s. 1. 2. -1. 2.

~ 6. 3. 4. -3. 2 • .
7. s. 6. • -5. 2 •

R· , T=S.55 14:52:28

. use aerge2.dta, clear
(Merge data #2)
R· , T=6.81 14:52:37

• aerge using aergel.dta
R· , T=5 .71 14:52:45

. list

odd even negeven negodd _merge
1. 7. 8. -8. -1. 3.
2. 9. 10. -10. -3. 3.

~ 3. 11. 12. -12. -5. 3.
4. 13. 14. -14. -7. 3.
5. 9. 10. . -9. 2.

R· , T=S.32 14:52:52

- 101 -

Purpose

[by varlist:] aodify [varlist]
[in range] [if exp]

The aodify command allows you to alter the values
of existing variables for particular observations.

Remarks

The replace command performs the same function as
the aodify command. It is easier to use the modify
command if there are only a few values to change,
or if the changes cannot be written as an ~
expression.

After the aodify command is entered, STATA prompts
you with the variable name, observation number, and
current value. At this point, you type in the
correct value. STATA reprompts you with the
corrected value. If you are satisfied with the
correction, press the Return key; otherwise type a
new value. You can terminate the aoclify command at
any time by typing end instead of a new value.

Options

autoaatic causes STATA to create value labels from
non-numeric data.

nolabel causes the numeric values of the variables
to be displayed rather than any associated value
labels.

- 102 -

Example

. list

1.
2.
3.
4.
5.

R; T=3.46

odd
1.
3.

-8.
7.
9.

15:00:26

• modify odd in 3

odd
3. -8.

odd =
odd= . 6
odd =
odd = . 5
odd=
odd = .

R· , T=83.21 15:01:57

even
2.

-8.

6.

5.

4.
6.
8.

10.

- 103 -

aodify

aore

Purpose

The aore command causes STATA to display the string
"--more--" and pause until any key is depressed.

Remarks

The aore command is useful in do-files to keep
information from scrolling off the screen before it
can be read. If Ctrl-Break response to the"-
more--" prompt, an error is generated. Since do
files terminate on any error, this feature provides
a way of halting the execution of a do-file. The
"--more--" prompt is not echoed to the spool file.

- 104 -

,,......____

~

Purpose

outfile [varlist] using filename
[in range][if exp]

The outfile command writes data to an external disk
file. This new file is not in STATA format,
although it can be read back by STATA using infile.
If "filename" is specified without an extension,
".raw" is assumed.

Remarks

The outfile command enables data to be sent to a
disk file for processing by a non-STATA program.
Each observation is written as a single "record";
that is, a carriage return/line feed combination is
written to the disk file after each observation.
The values of the variables are written using their
current display formats. A single blank space
separates each value.

Options

ca-a causes STATA to write the disk data set in
comma-separated-values format. In this format,
values are separated by commas instead of
blanks. Missing values are written as two
consecutive commas.

nolabel causes STATA to write the numeric values of
labeled variables. The default is to write the
labels enclosed in double quotes.

- 105 -

outfile

replace permits the outfile command to overwrite an
existing data set. replace may not be
abbreviated.

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=l.04 12:49:06

• outfile using exl.raw, nolabel
R; T=l.27 12:49:33

. type exl.rav
1. 1. 18.
2. 1. 29.
3. 1. 70.
4. 1. 115.
1. 2. 17.
2. 2. 28.
3. 2. 30.
4. 2. 41.
1. 3. 11.
2. 3. 10.
3. 3. 11.
4. 3. 20.

R; T=5.16 12:49:46

• outfile using ex2.raw, nolabel COIIII&

R; T=l.26 12:49:53

• type ex2.rav
1.,1.,18.
2.,1.,29.
3. , 1. , 70.
4.,1.,115.
1.,2.,17.
2.,2.,28.
3. ,2. ,30.

- 106 -

4.,2.,41.
1. ,3., 11.
2.,3.,10.
3. ,3 • , 11.
4. ,3. ,20.

R; T=2.04 12:49:58

outfile

- 107 -

[by varlist:] plot yvarl [yvar2 [•••]] xvar
[iu range] [if exp]

Purpose

The plot command produces a scatter diagram for the
variables yvarl and xvar. If more than one yvar is
specified, a single diagram is produced that
overlays the plot of each yvar against xvar. No
more than nine yvars may be specified.

Remarks

The plot command displays a "line printer plot"
which is a scatter diagram drawn using characters
available on an ordinary typewriter or line
printer. As a result, this scatter diagram can be
displayed on any monitor and printed on any
printer. The diagram necessarily has a rougher
appearance than one designed to be displayed on a
graphics monitor.

Output

STATA displays a scatter diagram of yvar against
xvar. Each point is plotted with an asterisk(*).
The minimum and maximum values of yvar and xvar are
marked and the variable names are displayed along
the axes. When more than one yvar is specified,
the first yvar is plotted with the letter "A", the
second with the letter "B", and so on. When more

- 108 -

~

plot

than one variable is plotted at the same point,
that point is plotted with an asterisk(*).

Options

colmms(#) specifies the column width of the plot.
The number specified must lie between 30 and
133. The default is 75. Note that columns is
specified as 10 larger than the actual width of
the plot. This extra space is used to label the
diagram.

encode plots points that occur more than once in
the data with the number of occurrences. If a
point occurs only once, it is plotted as usual
with an asterisk (*). .Points that occur twice
are plotted with the numeral two (2). Points
that occur three times are plotted with the
numeral three (3), and so on. Points that occur
ten times are plotted with "A", eleven with "B",
and so on, until "Z". The letter "Z" is used
subsequently. encode may not be specified if
there is more than one yvar.

hlines(#) causes a horizontal line of dashes(-) to
be drawn across the diagram every #-th line
where"#" is a number between O and the line
height of the plot. Specifying"#" as 0, which
is the default, results in no horizontal lines.

lines(#) specifies the line height of the plot.
The number specified must lie between 10 and 80.
The default is 23. Note that lines is specified
as 3 larger than the number of lines occupied by
the plot. This extra space is used to label the
diagram.

vlines(#) causes a vertical line of vertical bars
(I) to be drawn on the diagram every #-th column
where"#" is a number between O and the column
width of the plot. Specifying ''#" as O, which
is the default, results in no vertical lines.

- 109 -

plot

Example

• drop _all
R; T=0.17 14:10:25

• set obs 21
obs was 0, now 21
R; T=0.16 14:10:29

• generate x = _n - 11
R; T=0.33 14:10:38

• generate y = x * x
R; T=0.44 14:10:45

• plot y x, lines(16) colmms(50)

100. +
I *
I
I
I *
I

y I *
I
I *
I * I *
I
I * * o. + * * * * *

*

*

*

*
*

*

* *
+---------------------------------------+

-10. X 10.

R; T=3.79 14:11:07

- 110 -

~

plot

• plot y x, linea(l6) colmms(50) hlinea(5) vlinea(lO)

100. +
I * *
I
I
I-*--------+---------+---------+------*-
! I I I

y I * I I I *
I I I I
I * I I I *
I -------*--+---------+---------+*-------
1 *I I *I
I I I I
I I** I * * I

o. + I ***I** I
+---------------------------------------+

-10. X 10.

R; T=4.18 14:11:51

• generate newx = aba(x)
R; T=0.38 14:12:04

- 111 -

plot

• plot y newx, lines(l6) colmms(50) encode

100. +
I
I
I
I
I

y I
I
I
I
I
I
I

o. + * 2 2
2 2

2

2
2

2

2

2

+---------------------------------------+ o. newx

R; T=3.78 14:12:33

- 112 -

~

~
query

Purpose

The query command displays the settings of various
system parameters.

Remarks

The parameters displayed by the query command can
be changed by the set command. See the set command
for a complete description of each parameter.

Example

. query
Displ: linesize= 79
Spool: linesize= 79
Spool file query.ex,
help file stata.hlp
pref ix 1111

beep off; type=float;
R; T=0.38 11:32:59

pagesize= 23
pagesize= 0
proc, open; spooling on

more=O; encode: 1111

- 113 -

[by varlist:] regress [varname [varlistl
[(varlist2)]]

[= exp] [in range] [if exp]]

Purpose

The regress command regresses "varname" against
"varlistl". If "(varlist2)" appears, it indicates
a list of instrumental variables.

Remarks

The regress command performs linear multivariate
regression. By defining the appropriate dummy ~
variables, ANOVA and general linear models can be
estimated using regress. If regress is typed with
no arguments, the results of the last regression
are re-displayed. If only one variable is
specified, that variable is regressed on a
constant.

Output

The regress command produces a variety of summary
statistics and a table of regression coefficients.
The summary statistics include the number of
observations, the sum of the weights if the
regression is weighted, an ANOVA table for the
regression model, the F-statistic and marginal
significance level for the hypothesis that all
coefficients (except the constant) are zero, the R
square and adjusted R-square statistics and the
square root of the mean squared residual. The
coefficient table includes the estimated

- 114 -

regress

coefficients and their standard errors, the
associated t-statistics and their marginal
significances, and the mean for each variable. If
there is a constant in the model, it is listed
under the variable name "_cons".

The regress command stores some of its calculations
in memory and creates two system variables, _coef
and _pred. The stored calculations are used by the
test command. These stored calculations also
enable you to review the most recent regression by
typing regress with no arguments or qualifiers.

_coef is STATA's name for the coefficients from the
most recent regression. _coef is indexed by name.
For example, if the most recent regression
contained a regres sor cal led "educ", then
_coef(educ] will return the coefficient on "educ".
_pred produces predicted .values using the

'\ coefficients from the most recent regression. Like
_coef, _pred is keyed to variable names. Thus,
changing the contents of the variable "educ" after
running the regression changes the values returned
by _pred (if "educ" was an explanatory variable in
the most recent regression). You can use this
feature to run a regression, use another data set,
and then make out-of-sample predictions. The only
restriction is that the explanatory variables must
have the same name. (If they do not, you can use
renaae to change them.) There are no restrictions
on variable order or storage type. You may run a
regression on xp and then use the data to make
predictions or vice-versa.

To generate the residuals from a regression, use
~

generate resid=varnaae-_pred

- 115 -

regress

Options

hascons indicates that a user defined constant or
its equivalent is specified in the list of right
hand side variables.

aeans causes STATA to a111111&rize the variables in
the regression before displaying the regression
results.

noconstant suppresses the constant term (or
intercept) in the regression.

noforaat displays the summary statistics in g
format regardless of the display format
previously specified.

nooutput suppresses all regression output to the
screen. This is useful for quickly defining
_coef[] and _pred.

noscale suppresses the normalization of the weight.

Example

• use census
(Census Data)
R; T=l.48 13:46:39

• generate aedage2 = aedage~dage
R; T=0.88 13:46:52

- 116 -

I
t.....

)

• regress drate aedage aedage2
(obs=50)

Source I ss df

)

MS
---------+------------------------------

Model I 4548.84187 2 2274.42094
Residual! 3825.65813 47 81.3969814

---------+------------------------------
Total I 8374.50 49 170.908163

Variable! Coefficient Std. Error t

)

Number of obs= 50
F(2, 47) = 27.94
Prob> F = 0.0000
R-square = 0.5432
Adj R-square = 0.5237
Root MSE = 9.022

Prob> ltl Mean
---------+------------------- --

dratel 84.3
---------+--

medagel 21.60568 13.38839 1.614 0.113 29.54
medage2l -.271548 .2270073 -1.196 0.238 875.422

_cons I -316.2128 197.4148 -1.602 0.116 1 •
---------+--
R; T=l0.98 13:47:11

• generate pop=poplt5+pop517+popl8p
R; T=0.94 13:48:04

: ...
ID • •

....
00

I

• regress drate aedage aedage2 =pop
(sum of wgt is 2.2591E+08)
(obs=50)

Source I ss df MS

---------+------------------------------
Model I 3290.73747 2 1645.36874

Residual! 2044.28169 47 43.4953552
---------+------------------------------

Total I 5335.01916 49 108.87794'2

Variable! Coefficient Std. Error t

Number of obs= 50
F(2, 47) = 37.83
Prob> F = 0.0000
R-square = 0 .6168
Adj R-square = 0 .6005
Root MSE = 6.5951

Prob> ltl Mean
---------+--

dratel 87.34306
---------+--

medagel 9.375407 11.65003 0.805 0.425 30.11047
medage21 -.0731833 .190467 -0.384 0.703 909.3716

_cons I -128.4041 177.9866 -0.721 0.474 1.
---------+--
R; T=13.24 13:48:26

)))

... : ...
~ • CID

..-..-
\0

)

. * instrumental variable example, if qualifier

. * reaoves Bevada froa the data:

. regress dvcrate argrate (medage aedage2) if argrate<lOOO
(obs=49)

Source I ss df MS Number of obs=
---------+------------------------------ F(1, 47) =

Model I 4201.65955 1 4201.65955 Prob> F =
Residual I 6733.40167 47 143 .263865 R-square =

---------+------------------------------ Adj R-square =
Total I 10935 .0612 48 227 .813776 Root MSE =

Variable I Coefficient Std. Error t Prob > It I

)

49
7.08

0 .0106
0 .1310
0 .1125
11.969

Mean
---------+--

dvcratel 54.2449
---------+--

mrgratel .4382313 .1646469 2.662 0.011 106.7347
_cons I 7.470411 17.65653 0.423 0.674 1.

---------+--
R; T~l2.36 13:53:59 11

o1
11
ID
Cl
Cl

renaae old-varname new-varname

Purpose

The rename command changes the name of an existing
variable. The contents of the variable are
unchanged.

Example

• use hoel.dta
R; T=0.55 13:14:49

• renaae educ school
R; T=0.16 13:14:58

• describe
Contains data
Obs: 12 (max= 590)

Vars: 3 (max= 100)
1. marriage float %9.0g
2. school float %9.0g
3. number float %9.0g

Sorted by: school marriage

marlbl
edlbl

Note: Data has changed since last save
R; T=l.21 13:15:01

- 120 -

~

Purpose

[by varlist:] replace oldvar•exp
[in range][if exp]

The replace eommand changes the contents of an
existing variable. The command name replace cannot
be abbreviated.

Remarks

The replace command is identical to the generate
command except that it operates only on existing

~ variables while generate operates only on new
variables. If "in range" or "if exp" is specified,
the observations of oldvar that are not replaced
retain their original values.

~

Output

The number of changes actually made to the data.

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=0.50 13:15:49

• list nuaber

number
1. 18.
2. 29.

- 121 -

replace

3. 70.
4. 115.
5. 17.
6. 28.
7. 30.
8. 41.
9. 11.

10. 10.
11. 11.
12. 20.

R; T=l.59 13:15:59

. replace nuaber • log(nuaber)
(12 changes made)
R; T=0.88 13:16:08

• list nuaber

number
1. 2.890372
2. 3.367296
3. 4 .248495
4. 4.744932
5. 2 .833213
6. 3 .332205
7. 3.401197
8. 3. 713572
9. 2.397895

10. 2 .302585
11. 2 .397 895
12. 2.995732

R; T=l.48 13:16:12

- 122 -

~

~

run filename [parameter_listl

Purpose

The run command is identical to the do command
except that a set output error command is implied
at the start of the run command. The previous
output level is restored at the end of the do-file.

Options

The run command takes the same options as the do
command.

- 123 -

save filename

Purpose

The save command stores the data set currently in
memory as a disk data set with the name "filename".
If no file extension is specified, ".dta" is used
if the data set is data and ".xp" is used if the
data is xp.

Remarks

The save command stores data sets in a special
STATA format that is readable only by STATA. If
the encoding key is set, the file will be encoded
(see set encode for details). The use command
brings a saved data set back into memory.

The save command stores all the information about a
data set including the variable names, types,
display formats, sort order, and all labels
associated with the data set.

Options

nolabel omits value labels from the saved data set.
However, the associations between variables and
value label names are saved along with the data
set label and any variable labels.

replace permits the save command to overwrite an
existing "filename". replace may not be
abbreviated.

- 124 -

~

~ set beep {on I off}

contents {data I :z:p}

~

display {lineaize I pageaize} #

encode ["string"]

help filename

aaxobs # [lrecl #]

118X'Yar # [lrecl #]

aore I

obs#

output {proc I infona I error}

prefix [string]

seed#

spool {linesize I pagesize} #

type {illt I long I float I double}

Purpose

The set command specifies values of STATA system
parameters.

- 125 -

set

Remarks

A variety of system parameters can be specified by
the set command. Their current values can be
obtained during a STATA session by typing query.
Each system parameter is described below.

set beep onloff indicates whether the computer
should emit a beep at the completion of each
command. The default is off.

set contents datalxp specifies the interpretation
of the current data set. When the
interpretation is changed from data to xp, STATA
checks to see that the current data set is a
valid xp data set. ~en set contents xp is
typed STATA automatically renames the first
variable in the data set _cons. When set
contents data is typed STATA automatically
renames _cons to _user . · ~

set displaylspool linesizelpagesise # controls the
dimensions of STATA output. The linesize
parameter indicates the number of characters
that can be placed on one line. The pagesize
parameter has no effect on spool file output.
For the display it serves to indicate the number
of lines that can be displayed before a"-
more--" condition should arise.

set encode ["string"] causes saye and use commands
to encode and decode the data set using "string"
as the key. Use set encode with no arguments to
turn encryption off.

set help filename specifies the file to be used by
the help command. The default filename is
"STATA.HLP". You can use this command to place
the help file on a different drive than the
logged drive and/or in a different directory
than the current directory.

- 126 -

set

set 118Xobslaaxvar # specifies either the maximum
number of observations or variables in the
current STATA data set. When one of these

~ parameters is specified, the other is
automatically set to the maximum value
consistent with the amount of RAM in your
computer. The value for aaxvar can be attained
only if all the variables in the data set have
type int (unless you specify lrecl). For more
information on how STATA stores variables,
consult Appendix B, Memory Management in STATA.

~

~

set aore # specifies the number of seconds that the
output is halted when the "--more--" message is
displayed. If "#" is O (the default), then
output is halted until a key is pressed.

set obs# changes the number of observations in the
current data set. ":f/:" must be at least as great
as the current number of observations. If there
are variables in memory, the values of all new
observations are set to missing value.

set output specifies the output to be displayed.
The default , proc, means that all output,
including procedure (command) output is
displayed. infora suppresses procedure output
but displays informative messages, such as the
return message. error suppresses all output
except error messages. error is useful for do
files that you wish to run "silently". infora
is most useful for the by varlist: generate
construct when you do not want the details on
the missing values generated for each by group.
The current set output level is not shown by
query since query's output will only be
displayed if the current output level is proc.

set prefix [string] defines a string that will be
appended in front of all filenames that do not
start with an explicit drive indication, or that

- 127 -

set

are device references, or that start with a
backslash(\). For instance, if string is b:,
then the command use ayfile is interpreted as
use b:a:yfile. This provides a convenient way to
have all STATA disk input and output performed
on a directory other than the current directory.
The help filename is unaffected by the prefix.

set seed# initializes the random number seed for
the unifora{) function. It should be specified
as a large, odd, positive integer. If a
negative number is specified, it will be made
positive. An even number will be made odd.
STATA always initializes the seed to 1001, and
so will always produce the same sequence of
random numbers unles-s you re-initialize the
seed.

set type intllonglfloatldouble specifies the
default type to be assigned to all new
variables. The initial default is float.

- 128 -

~

sort varlist [in range]

Purpose

The sort command arranges the observations of the
current data set in ascending order of the values
of the variables in "varlist". Missing values are
interpreted to be larger than any other number, and
so are placed last. The data set is marked as
being sorted by "varlist" unless "in range" is
specified.

Remarks

The sorting technique used by the sort command is
very fast. A side effect of this technique is that
the order of variables not included in varlist is
not maintained. If it is desired to maintain the
order of additional variables, include them at the
end of the varlist.

The worst case for the STATA sort algorithm is a
varlist that is already sorted. As a safeguard,
the sort command checks to see if the data set is
already sorted in either ascending or descending
order before it begins. This check fails to detect
almost-sorted data sets, however. If you believe
your data is almost-sorted, you may wish to
deliberately randomize your data before sorting by
first sorting on a random number. (You can
generate a random variable with the unifo:ra()
function.)

Some timings (performed on an XT with an 8087 using
a memory disk) illustrate this point. Sorting 500

- 129 -

sort

randomly ordered observations takes roughly 30
seconds. Sorting 500 observations that are already
in ascending order takes 3.57 seconds. Sorting 500
observations that are in descending order takes
5.54 seconds. Sorting 500 observations that are in
ascending order except for one interchange (e.g.,
1, 3, 2, 4, 5, 6, •••) takes 463.17 seconds. The
following sequence of statements, which produce
·exactly the same result, takes only 63 .47 seconds:

generate randoa=unifora()
sort randoa
sort ahK>st
drop randoa

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=0.55 11:45:52

• sort educ
R; T=0.33 11:46:00

• list

marriage educ
1. Vry High College
2. High College
3. Very Low College
4. Low College
5. Vry High H.S.
6. Low H.S.
7. Very Low H.S.
8. High H.S.
9. Vry High < H.S.

10. Very Low < H.S.
11. Low < H.S.
12. High < H.S.

R; T=2.74 11:46:03

- 130 -

number
115.
70.
18.
29.
41.
28.
17.
30.
20.
11.
10.
11.

~

sort

. sort aarriage nuaber

~
R; T=0.39 11:46:04

. list

marriage educ number
1. Very Low < H.S. 11.
2. Very Low H.S. 17.
3. Very Low College 18.
4. Low < H.S. 10.
5. Low H.S. 28.
6. Low College 29.
7. High < H.S. 11.
8. High H.S. 30.
9. High College · 70.

10. Vry High < H.S. 20.
11. Vry High H.S. 41.
12. Vry High College 115.

,---.. R; T=2.75 11:46 :07

- 131 -

spool {using filename
on I off I close}

Purpose

The spool command echoes a copy of the current
STATA session to a file.

Remarks

spool creates a log of all or part of a STATA
session. This log is stor·ed as an ordinary DOS
file. It can be edited and/or printed after the
end of the STATA session.

To initiate spooling, give the command

spool using filename

where "filename" is the name under which you wish
to store the session log. If no extension is
specified with "filename", ".spl" is used. You may
also specify device names, for instance, aux:,
coal:, pm:, and lptl:. Unlike DOS, STATA requires
the ·: on the end of the device name. Thus, to
spool directly to the printer, give the command

spool using pm:

We recommend, however, spooling to
you can then print multiple copies
edit it using your word processor.
halt spooling, give the command

spool off

- 132 -

disk files since
of the output or

To temporarily

spool

Spooling can be resumed with

~ spool on

~

Give the command

spool close

to terminate spooling and to save the file
containing the session log.

Output

The log contains everything that appears on the
screen during the STATA session. Commands and
their associated output appear just as they were
initially displayed. However, the ''--more--"
message that appears when output to the screen is
halted is not sent to the spooled file.

The linesize of the spooled file may be set
independently of the linesize of the display
screen. This feature is useful for creating
oversize plots. For more details, see the
description of the set command.

Options

Options for the spool command may only be specified
when the command

spool using filename

~ is given.

- 133 -

spool

noprec causes STATA to spool only the characters
you type. No output of any kind (including
return and error messages) is sent to the
spooled file. This option offers an easy way to
generate a do-file.

replace directs STATA to allow spooling to
overwrite an existing file. replace may not be
abbreviated

- 134 -

Purpose

[by varlist:) sm.arize [varlist)
[=exp) [in range] [if exp)

The suaaarize command calculates and displays a
variety of univariate summary statistics. If no
varlist is indicated, then summary statistics are
calculated for all the variables in the current
data set.

Remarks

~ If "=exp" is specified, the expression is used to
weight the data. Each observation is multiplied by
the value of the weighting expression before the
summary statistics are calculated. In other words,
the weighting expression is interpreted as the
discrete density of each observation.

Output

The smaaarize command can produce two different
sets of summary statistics. Normally, the summary
statistics are the number of non-missing
observations, the mean and standard deviation, and
the minimum and maximum values for each variable.
If the detail option is specified, the same

~ information is presented along with the variance,
skewness, and kurtosis. The four smallest and four
largest values are listed instead of just the
minimum and maximum. The following percentiles are
also listed: 1%, 5%, 10%, 25%, 50% (the median),
75%, 90%, 95%, and 99%.

- 135 -

Options

detail produces the additional statistics described
above.

noforaat displays the summary statistics in g
format regardless of the display format
previously specified.

noscale suppresses the normalization of the weight.

- 136 -

....
c.,.,,

,)

Exam,E_le

• use census
(Census Data)
R; T=l.54 15:19:44

• suaurize

varnamel Obs

)

Mean Std. Dev. Min Max
--------+---
mrgratel 50 133.16 188.095976 75. 1428.
dvcratel 50 56.62 22.4770995 29. 173.

state! 50 29.32 15.7822427 1. 56.
dratel 50 84.3 13.0731849 40. 107.

poplt51 50 326277.78 331585.142 35998. 1708400.
pop5171 50 945951.6 959372.831 91796. 4680558.
pop65pl 50 509502.8 538932.376 11547. 2414250.
popl8pl 50 3245920.06 3430531.31 271106. 17278944.
medagel 50 29.54 1.69344465 24.2000008 34.7000008
dvcmrgl 50 .501854873 .116144019 .12114846 .770114958

division! 50 5.12 2.56061217 1. 9.
region! 50 2.66 1.06157373 1. 4.

R; T=9.67 15:20:11

)

I
" C,

• sm111arize drate, detail

Percentiles
1% 40.
5% 55.

10% 68.5
25% 79.

w
00 50% 85.5
I

75% 93.
90% 98.
95% 100.
99% 107.

R; T=7.53 15:20:30

-

Death Rate

Smallest
40.
50.
55. Obs
65. Sum of Wgt •

Mean
Largest Std. Dev.

99.
100. Variance
104. Skewness
107. Kurtosis

)

50
50.

84.3
13.0731849

170 .908163
-1.1932843 2

4.99267571

)

I
lo"•

" ..

Purpose

[by varlist:] tabulate varlist
[= exp][in range] [if exp]

The tabulate command produces one-way and two-way
tables of frequency counts .

Remarks

For each value of a specified variable (or set of
values for a pair of variables) , tabulate reports
the number of observations with that value. In
other words, tabulate reports the frequency of
occurrence of each value. There must be at least
one variable and at most two variables included in
the varlist. N-way tables can be calculated by
preceding the tabulate command with the by varlist :
prefix.

If """exp" is specified, the expression is used to
weight the variables. This weight is interpreted
as a replication (number of cases) count .

The generate option produces a set of dummy
variables indicating each level of the tabulated
variable. These dummy variables can be interacted
and used with the regress command to estimate ANOVA
and general linear models.

Output

The tabulate command displays the values of the
specified variable(s) in ascending order. For one-

- 139 -

tabulate

way tables, frequency of occurrence and relative
frequency of each value is listed along with the
percentage of the data set for which the variable
is at least as large as this value. For two-way
tables, the frequency of occurrence of each pair of
values is reported in tabular format.

Options

cell displays the relative frequency of each cell
in a two-way table.

chi2 causes STATA to calculate and display the chi
squared statistic for the hypothesis that the
rows and columns of a two-way table are
independent.

col111111 displays in each cell of a two-way table the
relative frequency of that cell within its
column.

generate(name) creates a set of dummy variables ~
that indicate each value of the variable. This
option cannot be used when two variables are
tabulated.

nofreq suppresses the printing of the frequencies.
plot produces a bar chart of the relative

frequencies. This option cannot be used when
two variables are tabulated.

row displays in each cell of a two-way table the
relative frequency of that cell within its row.

- 140 -

Example

• use hoel.dta
(Data from Hoel's textbook)
R; T=0.55 12:03:54

• tabulate educ
Level ofl

tabulate

Education I Freq. Percent Cum.
------------+-----------------------------------

College I 4 33.33 33.33
H.S. I 4 33.33 66.67

< H.S . I 4 33.33 100.00
------------+-----------------------------------

Total I 12 100.00
R; T=2 . 15 12 :04:01

- 141 -

..,_
~
1-,)

tabulate educ= number, plot
Level ofl

Education I Freq.
------------+------------+---

College I 232 I***
H.S. I 116 I******************

< H.S. I 52 I***
------------+------------+---

Total I 400
R; T=3.08 12:04:04

))

"' fD

i
fD

"' ft)

,-
.i:-
u,)

))

• tabulate educ marriage= n1llllber, row chi2

Level of I Marriage Adjustment Score->
Education! Very Low Low High Vry High Total

-----------+--------------------------------------+---------
College I 18 29 70 115 I 232

I 7.76 12.50 30.17 49.57 I 100.00
-----------+------------------------- ·------------+---------

H. S. I 17 28 30 . 41 I 116
I 14.66 24.14 · 25.86 35.34 I 100.00

-----------+--------------------------------------+---------
< H.S. I 11 10 11 20 I 52

I 21.15 19.23 21.15 38.46 I 100.00
-----------+--------------------------------------+---------

Total I 46 67 111 176 I 400
I 11.50 16.75 27.75 44.00 I 100.00

chi2(6)= 19.9426 Prob>chi2=0.003
R; T=l0.65 13:38:08

)

rt • i • rt
C,

.....
~
,I),,

I

• tabulate educ, nofreq generate(ed)
R; T=0.82 12:04:13

• describe
Contains data

Obs: 12 (max= 604)
Vars: 6 (max= 100)

1. marriage float %9.0g marlbl
2. educ float %9.0g edlbl
3. number float %9.0g
4. edl int %8.0g
5. ed2 int %8.0g
6. ed3 int %8.0g

Sorted by: educ marriage
Note: Data has changed since last save
R; T=l.65 12:04:15

))

Data from Hoel's textbook

Marriage-adjustment score
Lev.el of education
Number of cases
educ==College
educ==H.S.
educ==< H.S.

)

rt r
Ill
rt
II

)

• list educ edl ed2 ed3

educ edl
1. College 1.
2. College 1.
3. College 1.
4 . College 1.
5. H.S. o.
6. H.S. o.

,... 7. H.S. o.
.p. 8. H.S. o. \JI

9. < H.S. o.
10. < H.S. o.
11. < H. S. o.
12. < H.S. o.

R; T=3.41 12:04:19

ed2 ed3
o. o.
o. o.
o. o.
o. o.
1. o.
1. o.
1. o.
1. o.
o. 1.
o. 1.
o. 1.
o. 1.

)

rt • r ...
1111
rt
II

test exp=exp

Purpose

The test command tests linear hypotheses about the
most recent regression.

Remarks

The test command perfopns F-tests of linear
restrictions applied to the most recent regression.
Multiple hypotheses can he tested by issuing
multiple test commands and specifying the

~

accUJDUlate option. ~

Output

The test command echoes the hypotheses being
tested. In addition, the F-value for the test and
the probability, under the null hypothesis, of
randomly drawing a value higher than the computed
F-value are displayed.

Options

accUJDUlate allows a hypothesis to be tested jointly
with the hypotheses previously tested.

notest suppresses the output. This option is
useful when you are only interested in the joint
test of a number of hypotheses.

- 146 -

~

Example

• use census
(Census Data)
R; T=l.65 14:21:23

• generate •edage2=medage-Aaedage
R; T=0.88 14:21:36

test

* please see example under regress for regression
. * the nooutput option suppresses the output here
• regress drate aedage aedage2, nooutput
(obs=S0)
R; T=2.63 14:21:46

• test aedage=O

(1) medage = 0.0

F(1, 47) = 2.60
Prob> F = 0 .1133

R; T=2.09 14:21:56

• test •edage2=0, accumulate

(1) medage = 0.0
(2) medage2 = 0.0

F(2, 47) =
Prob> F =

R; T=2.03 14:22:05

27 .94
0.0000

- 147 -

test

• test aedage=l, accumulate

(1) medage = 0.0
(2) medage2 = 0.0
(3) medage = 1.0

Constraint 3 dropped

F(2, 47) =
Prob > F =

R; T=2.47 14:22:13

• test aedage2=0

(1) medage2 = 0.0

F(1, 47) =
Prob> F =

R; T=l.92 14:22:21

27 .94
0.0000

1.43
0.2376

• test 2*(aedage+medage2/4)=(medage-medage2)/4

(1) 1.7 5 medage + .75 medage2 = 0.0

F(1, 47) = 2 .61
Prob> F = 0 .1126

R; T=2.53 14:22:47

- 148 -

~ type filename

Purpose

The type command lists the contents of a file
stored on disk. This command is identical to the
DOS TYPE command.

Example

• type type.do
use hoel.dta
describe

~ list

R; T=0.49 12:07:41

- 149 -

use filename

Purpose

The use command loads a STATA format data set from
a disk file into memory. If no extension is
specified with "filename", ".dta" is assumed.

Remarks

The data set specified by "filename" must be in
STATA format, that is, i~ must have been created by
save. If the file was encoded, the current
encoding key must be set appropriately. See the
description of the set encode command for details.

Output

If the data set has a data set label, it is
displayed.

Options

clear permits the data set to be loaded even if
there is a STATA data set currently in memory.

nolabel prevents value labels in the saved data set
from being loaded. However, associations
between variables and value label names are
loaded.

- 150 -

~

~

Appendices

- 151 -

Description of Data Sets

ceJ1su~.dta

• describe
Contains data Census Data
Obs: 50 (max= 716)

Vars: 12 (max= 99)
1. mrgrate long %10 .Og Marriages per 100,000 VI

N 2. dvcrate long %10.0g Divorces per 100,000
3. state int %8.0g fips
4. drate long %10.0g Death Rate
5. popltS long %10.0g Pop.< 5 yrs
6. pop517 long %10.0g Pop. S<=age<=l7
7. pop65p long %10.0g
8. popl8p long %10.0g Pop. 18+
9. medage float %9.0g Median Age

10. dvcmrg float %9.0g
11. division int %8.0g division Census Division
12. region int %8.0g region Census Region

Sorted by: state
R; T=2.42 13:13:56

)))

~
't,
n>
g_
M

>

....
V,
I.,,

)))

. su..arize

varname I Obs Mean Std. Dev. Min Max
--------+---
mrgratel 50 133.16 188.095976 75. 1428.
dvcratel 50 56.62 22.4770995 29. 173.

state! 50 29.32 15.7822427 1. 56.
dratel 50 84.3 13.0731849 40. 107.

popltSI 50 326277.78 331585.142 35998. 1708400.
pop517l so 945951.6 959372.831 91796. 4680558.
pop6Spl so 509502.8 538932.376 11547. 2414250.
popl8pl 50 3245920.06 3430531.31 271106. 17278944.
medagel 50 29.54 1.69344465 24.2000008 34.7000008
dvcmrgl 50 .501854873 .116144019 .12114846 .770114958

division! 50 5.12 2.56061217 1. 9.
region! 50 2.66 1.06157373 1. 4.

R; T=9.72 13:14:08

~
'tj
(1)

i::s
Cl,.
I-'•
M

>

....
VI
.i:-

hoel.dta

• describe
Contains data

Obs: 12 (max=
Vars: 3 (max=

151)
100)

1. marriage float %9.0g
2. educ float %9.0g
3. number float %9.0g

Sorted by: educ marriage
R; T=l.10 13:04:21

)

marlbl
edlbl

)

Data from Hoel's textbook

Marriage-adjustment score
Level of education
Number of cases

)

~
"ti
n,

&
M

>

Appendix A

. list

marriage educ number
~ 1. Very Low College 18.

2. Low College 29.
3. High College 70.
4. Vry High College 115.
5. Very Low H.S. 17.
6. Low H.S. 28.
7. High H.S. 30.
8. Vry High H.S. 41.
9. Very Low < H.S. 11.

10. Low < H.S. 10.
11. High < H.S. 11.
12. Vry High < H.S. 20.

R; T=2.75 12:39:13

- 155 -

Appendix A

. list, nolabel

marriage educ number
1. 1. 1. 18.
2. 2. 1. 29.
3. 3. 1. 70.
4. 4. 1. 115.
5. 1. 2. 17.
6. 2. 2. 28.
7. 3. 2. 30.
8. 4. 2. 41.
9. 1. 3. 11.

10. 2. 3. 10.
11. 3. 3. 11.
12. 4. 3·. 20.

R; T=2.92 12:39:21

- 156 -

~

~

oddeven.dta

• describe
Contains data

Obs: 5 (max=
Vars: 2 (max=

1. number
2. odd

Sorted by:
R; T=0.55 14:22:01

. list

number
1. 1.
2 . 2.
3. 3.
4. 4.
5. 5.

R·
'

T=2.42 14:22:06

610)
100)

float
float

odd
1.
3.
5.
7.
9.

%9.0g
%9.0g

- 157 -

Appendix A

Appendix B

Memory Management in STATA

STATA stores the current data set in memory. As a
result, STATA runs quickly and changes made to the
current data set do not affect any copies of the
data stored on disk. If the power fails or the
computer is accidentally re-booted, only the
contents of memory are lost. No disk files are
left open (with the possible exception of spool),
and no pointers needed to make the disk files
intelligible are stored in memory.

The price you pay for these features is the
requirement that the current data set be able to
fit in memory. When STATA is started, the program
examines your PC, determines how much memory is
available, and then lays claim to all of it. Thus
the size of the largest data set that you can use
depends upon the hardware configuration of your PC.

Data sets have two dimensions: the number of
variables and the number of observations. On
start-up, STATA sets the maximum number of
variables to 99. This setting leaves space for a
maximum of 721 observations on a 256K PC or 2,573
observations on a 640K PC (the version you have may
differ slightly from these numbers).

If you desire, you may trade off variables for
observations or observations for variables by using
the set aaxvar or set aaxobs command. Setting
ll&XY&r to 50, for instance, makes it possible to
have 1,416 observations on a 256K PC and 5,047
observations on a 640K PC (again, your numbers may
differ). Setting aaxvar to 25 allows 2,779
observations on 256K or 9,900 on a 640K PC. In
practice, the PC is just not fast enough to make
working with 9,000 observations in an interactive
environment pleasant. It is feasible though.

- 158 -

~

~

Appendix B

When it is necessary to pack as much data into
memory as possible, you may need to reset the lrecl
parameter. Recall that there are four variable
types in STATA (int, long, float, and double) and
that a single observation of each variable type
requires a different amount of memory: an int
requires 2 bytes, a long or float requires 4 bytes,
and a double requires 8 bytes. The amount of
memory that is available for storing a single
observation of all variables is equal to lrecl.

Normally, STATA sets lrecl to 2~ar, thus lrecl
is equal to 198 bytes when the program is started.
Since only ints are 2 bytes long, the current data
set can contain 99 variables only if they are all
ints. However, the data set may contain up to 49
longs or floats (4 bytes times 49 variables= 196)
or up to 24 doubles. Variable types can be
combined freely in the same data set as long as the
sum over the variable types of the number of
variables of each type times the storage
requirement for each type is less than or equal to
lrecl bytes. For example, with lrecl=l98 and
aaxvar=99, it is possible to store 19 ints,
20 float, and 10 doubles (19*2 + 20*4 + 10*8
= 198 = lrecl). It is impossible to add more
variables to this data set even though the data set
contains only 69 variables and aaxvar is equal to
99.

If all the variables you use are floats, you may
want to set lrecl to 4*aaxvar instead of 2~ar.

set IUllt'Yar 50 lrecl 200

partitions memory so that it can contain a maximum
of 50 variables, but each observation may now
occupy 200 bytes. If lrecl were not specified, it
would automatically be set to 2*50=100. Setting
the lrecl=200 makes it possible to store up to 50
floats or longs, or 25 doubles.

- 159 -

Appendix B

You may only specify lrecl on a set aaxobs or
set aaxvar command. Since these commands can only
be given when the current data set is empty, feel
free to experiment. The worst that can happen is
that you will receive the message "system limit
exceeded - see manual", which indicates your
request was ignored either because there is
insufficient memory on your PC or because you
attempted to set lrecl to less than 2*aaxvar or
more than 8*aaxvar.

- 160 -

~

Appendix C

Messages and Return Codes

This appendix describes the return codes and
messages produced by STATA.

1
You pressed Ctrl-Break. This is not
considered an error.

3 no data set in use
You attempted to perform a command (such as
merging or appending) which requires some
data in memory. There are no data in
memory.

4 No - data in memory would be lost
You attempted to perform a command which
would substantively alter or destroy the
data and the data have not been saved (or
have not been saved since the last change).
If you wish to continue anyway, add the
clear option to the end of the command.
Otherwise, save the data first.

5 master data not sorted

6

using data not sorted
Both the data set in memory and the data set
on disk must be sorted by the variables
specified in the varlist of merge before
they can be aerged. If the master data set
is not sorted, sort it. If the using data
set is not sorted, use it, sort it, and then
save it.

Return code when string does not exist from
confira existence.

- 161 -

Appendix C

18 you must start with an empty data set
The command (e.g., infile) requires that no
data be in memory. You may not append to
existing data using infile. Instead,
drop _all, infile the new data, and then
append the previously existing data.

100 ___ required

101

Certain commands require a varlist, or an in
range, or other elements of the language.
The message specifies the required item that
was missing from the command you gave. See
the command's syntax diagram.

___ not allowed
Certain commands do not allow an if exp, or
other elements of the language. The message
specifies which item in the command is not
allowed. See the command's syntax diagram.
You may not specify in or if when using xp ~
data sets even when the command syntax would
otherwise allow it.

102 too few variables specified
The command requires more variables than you
specified. For instance, plot requires at
least two variables. See the syntax diagram
for the command.

103 too many variables specified
The command does not allow as many variables
as you specified. For example, tabulate
takes only one or two variables. See the
syntax diagram for the command.

104 nothing to input
You gave the input command with no
arguments. STATA will input onto the end of
the data set, but there is no existing data
set in this case. You must specify the
variable names on the input command.

- 162 -

~

Appendix C

110 ___ already defined
The variable or value label has already been
defined and you attempted to redefine it.
This occurs most often with generate. If
you really intend to replace the values, use
replace. For value labels, if you intend to
replace the label, first give the command
label drop name.

111 ___ not found
no variables defined

The variable does not exist. You may have
mistyped the variable's name.

___ not found in using data
You specified a varlist with aerge, yet the
variables on which you wish to merge are not
found in the using data set, so the aerge is
not possible.

help for ___ not found
You requested help on a
the on-line help file.
of help items.

topic not found in
Type help for a menu

___ ambiguous abbreviation
You gave a variable name an ambiguous
abbreviation; the abbreviation could
indicate more than one variable. Use a non
ambiguous abbreviation.

120 invalid %format
You specified an invalid %format. See
format.

~ 130 expression too long
You specified an expression that is too long
for STATA to process. Break the expression
into smaller parts.

- 163 -

Appendix C

131 not possible with test
Your requested test is non-linear in the
variables. test tests only linear
hypotheses.

132 Too many'(' or'['
Too many')' or']'

You specified an expression with unbalanced
parentheses or brackets.

133 unknown function ___ ()
You specified a function that is unknown to
STATA. See "Expressions". Alternatively,
you may have meant to subscript a variable,
and accidentally used parentheses rather
than square brackets.

190 request may not be combined with by
Certain commands may not be combined with
by, and you constructed such a combination.
See the syntax diagram for the command.

in may not be combined with by
in may never be combined with by. See
description under by.

198 invalid syntax
invalid

range invalid
___ must be between and
___ invalid obs no
Obs nos. out of range
invalid filename
___ invalid varname
___ invalid name
multiple by's not allowed

--- found where number expected
on or off required

All items in this list indicate invalid
syntax. These errors are often, but not
always, due to typographical errors. STATA
attempts to provide you with as much

- 164 -

Appendix C

information as it can. Review the syntax
diagram for the designated command.

In giving the message "invalid syntax" STATA
is not very helpful. Errors in specifying
expressions often result in this message.

199 unrecognized command
STATA failed to recognize the command,
probably due to a typographical or
abbreviation error.

201 may not drop _cons
may not rename _cons

_cons is a special STATA variable name
designating the sum vector of a cross
product (xp). You are not allowed to drop
or renaae it.

~ 202 invalid xp (__) - see manual
You attempted to designate the data in
memory as an xp data set, but the criteria
are not met. The number in parentheses
explains which criterion was not met.
1: the matrix is not square.
2: the number of observations stored in the
(1,1) element is less than or equal to zero.
3: The number of observations stored in the
(1,1) element is not an integer.
4: Two symmetric, off diagonal elements are
both equal to missing values.
5: Two symmetric, off diagonal elements are
not equal.

210 request not possible on xp data
~ You requested something that would be

possible on data but is not possible on xp.
Non-linear expressions or commands such as
tabulate and plot are likely suspects.

- 165 -

Appendix C

211 request requires xp data
You attempted to designate the data in
memory as data, which it is already.

301 last regression not found
You typed regress without arguments,
performed a teat on the last regression, or
attempted to use _pred, but there is no
previous regression.

601 file ___ not found
The filename you have specified cannot be
found. Perhaps you mistyped the name, or it
may be on another diskette or directory.

602 file ___ already exists
You attempted to write over a file that
already exists. STATA will never let you do
this accidentally. If you really intend to
overwrite the previous file, reissue the
last command specifying the replace option.

603 file ___ could not be opened
The file, while found, failed to open
properly. This error is unlikely to occur.
You will have to review the DOS manual to
determine why it occurred in this case.

604 spool already open
You attempted to open a spool file when one
is already open. Perhaps you forgot you
have the file open or forgot to close it.

610 file ___ not STATA format
The designated file is not a STATA format
file. This occurs most frequently with uae,
append, and aerge. You probably typed the
wrong filename. Alternatively, you may ave
the encode key set incorrectly.

- 166 -

,,..--,..,_

Appendix C

699 "error writing file"
A fatal (for the file, not STATA) error
occurred while writing the file. The file
is now closed and STATA has given up.
Review the DOS manual to determine why this
happened.

900 no room to add more observations
There is no room in the current partition to
add more observations; you are already at
the maximum. See Appendix B, Memory
Management in STATA. You might save the
data, repartition, and then use it again.

901 no room to add more variables
There is no room in the current partition to
add more variables. See 900 above.

902 no room to add more variables due to lrecl
,---._ There is no room in the current partition to

add more variables due to an lrecl shortage.
See 900 above.

920 too many macros
You specified a line containing too many
macros, and after expansion of the macros
the line exceeds 1000 characters. The line
was ignored.

950 insufficient memory
There is insufficient memory in your PC to
carry out the request. Consider dropping
value labels, variable labels, or macros.

1000 system limit exceeded
~ In most cases you attempted to set aaxvar or

set aaxoba outside limits that are
physically possible on your PC. You will
also receive this message if you specify the
lrecl parameter with a value less than
2~ar or more than 8~ar. See

- 167 -

Appendix C

9xxx

Appendix B, Memory Management in STATA. In
all cases the request has been ignored and
the partition was not changed.

You will also get this message if you
attempt to go beyond any of STATA's preset
limits, for instance, by specifying an
expression with more than 200 operators or
more than 50 constants or more than five
sua() functions.

Various messages, all indicating system
failure. You should never see such a
message. If one occurs, exit STATA
immediately and report the problem.

Other Messages

--more--
STATA never allows output to scroll off the
screen (unless you explicitly set display
linesize O or set aore to some small number).
When --more-- occurs STATA waits for you to
press any key on the keyboard before
continuing. If you hold down the Ctrl key and
press Break, STATA will terminate the command
as soon as possible. If you have set aore to
some number other than 0, STATA waits that
many seconds and then acts as if you tapped
some key other than Ctrl-Break.

Note: __ missing values generated
The command resulted in the creation of the
indicated number of missing values. Missing
values occur when a mathematical operation is
performed on a missing value, or when a
mathematical operation is infeasible.

- 168 -

~

Appendix C

Note: File not found
You specified the replace option on a command,
yet no such file was found. The file was
saved anyway.

Note: ___ is in using data but will be now
Occurs during append or aerge. The first
blank is filled in with a variable name and
the second and third blanks with a storage
type. For instance, you might receive the
message "myvar is float but will be int now",
meaning that myvar is already of type of int
in the master data set, but that in the using
data set a variable of the same name is found
of type float. Thus, truncation could occur
as the using data is copied into the master.
You will only receive this message if
truncation or rounding might occur.

label __ already defined
Occurs during append or aerge. The using data
had a label definition for one of its
variables, and a label was stored with the
data set. A label with the same name was
already defined. append and aerge never
replace data or labels. Thus, you are warned
that the label already existed, and the
previous definition was retained.

Note: hascons false
You specified the hascons option on regress,
yet an examination of the data revealed that
there is no effective constant in your
varlist. STATA added a constant to the
regression.

- 169 -

Appendix D

Notation

Variables
(e.g., x)
lowercase
vectors.
boldfaced

Methods and Formulae

printed in lowercase and not boldfaced
are scalars. Variables printed in
and boldfaced (e.g., w) are column
Variables printed in uppercase and
(e.g., X) are matrices.

1 is a column vector of l ' s.

vis a column vector of weights specified by the
user . If no weights are specified, v=l.

w is a column vector of normalized weights. If no
weights are spec i fied or noscale was specified,
v=v. Otherwise, w=(v/(l'v))*(l'l).

n is the effective number of observations, defined
as l ' w.

xis the vector of observations on the variable
specified by the user.

Element-by-element multiplication of a vector is
indicated by".". For instance, x.x denotes the
column vector of the squares of x.

w[i) is a scalar, the i-th element of the vector w.

Summary Statistics

The number of observations is n. The sum of the
weights is l'v.

Define ml=l'x/n, m2=x'x/n, m3=x'(x.x)/n, and
m4=x' (x.x.x) /n.

The~: m=ml.

- 170 -

\

Appendix D

The variance: v=(m2-ml'kml)n/(n-l).

The standard deviation: s=sqrt(v).

The skewness: k=m3/sqrt(m2*m2*m2).

The kurtosis: u=m4/(m2-km2)

The p-th percentile is defined as follows: Let
P=p/lOO*n. Let V[i]=v[l]+ ••• +w[i). Find the first
index i such that V[i]>P. If V[i-l]==P then the
percentile is
(v[i-l]x[i-l]+w[i]x[i])/(v[i-l]+v[i]). Otherwise,
the percentile is x[i].

Regression Statistics

The number of observations is n. The sum of the
weights is l'v. Define c=l if there is a constant
in the regression and zero otherwise. Define
k=number of right hand side (rhs) variables
(including the constant).

Let X denote the matrix of observations on the rhs
variables, y denote the vector of observations on
the left hand side (lhs) variable, and Z denote the
matrix of observations on the instruments. If the
user specifies no instruments, then Z=X. In the
following formulae, if the user specifies weights
then X'X, X'y, y'y, Z'Z, Z'X, and Z'y are replaced
by X'DX, X'Dy, y'Dy, Z'DZ, Z'DX, and Z'Dy,
respectively, where Dis a diagonal matrix whose
diagonal elements are the elements of v. We
suppress the D below to simplify the notation.

If no instruments are specified define A as X'X and
a as X'y. Otherwise, define A as X'Zinv(Z'Z)(X'Z)'
and a as X'Zinv(Z'Z)Z'y where inv() denotes the
matrix inverse operator.

- 171 -

Appendix D

The coefficient vector bis defined as inv(A)a.

The total .!,Ym of squares tss equals y'y if there is
no intercept and y'y-((l'y)(l'y)/n) otherwise. The
degrees of freedom are
n-c.

The error .!,Ym of squares ess is defined as
y'y-2bX'y+b'X'Xb if there is no intercept and as
y'y-b':X'y otherwise. The degrees of freedom are n
k.

The model .!,Ym of squares mss is defined as tss-ess.
The degrees of freedom are k-c.

The™ square error mse is defined as ess/(n-k).

The root™ square error rmse is defined as
sqrt(mse).

The F-statistic £stat of k-c and t-k degrees of
freedom is defined as (mss/(k-c))/mse if no
instruments are specified. If instruments are
specified and c=l then £stat is defined as
(b-c)'A(b-c)/(mse*(k-1)), where c is a vector of
k-1 zeros and kth element l'y/n. Otherwise, £stat
is undefined (missing value). (In this case you
may use the test command to construct any F~test
you wish.)

The R-square rsq is defined as 1-ess/tss if no
instruments are specified and otherwise as
l/(l+(l/fstat)(n-k)/(k-1)).

The Adjusted R-square rbarsq is defined as
1-(1-rsq)(n-c)/(n-k).

The Standard error s[i] of b[i] is defined as
sqrt(mse*(inv(A))[i,i]).

The t-statistic is defined as b[i]/s[i].

- 172 -

~

Appendix D

Hypothesis Testing

Let Rb=r denote the set of q linear hypotheses to
~ be tested jointly.

,,......__

The constrained estimate q is defined
b+inv(A)I'inv(Iinv(A)R')(r-1.b) and the
corresponding F-statistic is (1/mse)(b-q)'A(b-q).

Contingency Table

Let the contingency table haver rows and c
columns, and let n[i,j] represent the number of
observations in the i-th row and j-th column. Let
n[i,.] represent the total number of observations
in row i, n[.,j] the total number of observations
in column j, and n[.,.] the total number of
observations.

The chi-square statistic with (r-l)(c-1) degrees of
freedom is defined as the sum over all cells of

(n[i,j]-n[i,.]n[.,j]/n)A2/((n[i,.]n[.,j])/n[.,.])

- 173 -

Appendix E

Hardware Requirements

STATA runs on an IBM PC, PC/XT, PC/AT, or
equivalent. STATA requires a computer with at ~

least 256K of memory and two double density/double
sided diskette drives or a single diskette and a
fixed disk. Additional memory allows STATA to
handle larger data sets.

If the computer includes an 8087 math co-processor
STATA will use it. Some comparative timings,
performed on an XT using a memory drive, are:

w/o 8087 8087
set obs 7000
gen n=_Jt 21.97 20.36
gen nev=n-._ 78.65 48.54
smaarize 110.62 46 .10
gen rand""Dllifora() 31.91 30.36
reg 11 new rand 242. 72 79.84

Time to convert 50 obser-
vations on 26 variables 73. 71 24.70
Sort 100 random variables 106.50 72.59
Take log of 500 numbers 20.48 5.50
Take invnora of 500 numbers 181.19 23.92

Thus, heavily math dependent routines (.e.g,
suaaarize and regress) run approximately 2 to 3
times faster. Complicated mathematical functions
such as iDYDOra() speed up by a factor approaching
8.

- 174 -

Appendix F

Installation Instructions

The distribution diskette contains a file named
~ INSTALL.DOC that tells you how to install STATA on

your computer. Boot the system as you ordinarily
would. If you have two diskette drives and no hard
disk, place the distribution diskette in drive B.
If you have a fixed disk place the distribution
diskette in drive A. In the text below, lowercase
d stands for the letter of the drive containing the
distribution diskette.

Type:

TYPE d:DSTALL.DOC

and then follow the instructions. The distribution
diskette may also contain updates to this manual.
You can determine if there are by typing:

Dll d:*.UPD

The message "File not found" indicates there are no
updates; otherwise you will obtain a list of one or
more files. You can review the updates on the
screen by using the DOS TYPE command. You may use
the DOS PRINT command to make a printed copy for
inclusion in this notebook.

- 175 -

	Cover
	Contents
	Fundamentals
	Elements
	A-C
	D-F
	G-L
	M-R
	S
	T-Z
	Appendices

