Expectations

Expectations. (See also Hays, Appendix B; Harnett, ch. 3).

A. The <u>expected value</u> of a random variable is the arithmetic mean of that variable, i.e. $E(X) = \mu$. As Hays notes, the idea of the expectation of a random variable began with probability theory in games of chance. Gamblers wanted to know their expected long-run winnings (or losings) if they played a game repeatedly. This term has been retained in mathematical statistics to mean the long-run average for any random variable over an indefinite number of trials or samplings.

B. <u>Discrete case:</u> The expected value of a discrete random variable, X, is found by multiplying each X-value by its probability and then summing over all values of the random variable. That is, if X is discrete,

$$E(X) = \sum_{A \parallel X} x p(x) = \mu_X$$

C. <u>Continuous case</u>: For a continuous variable X ranging over all the real numbers, the expectation is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx = \mu_X$$

D. <u>Variance of X</u>: The variance of a random variable X is defined as the expected (average) squared deviation of the values of this random variable about their mean. That is,

$$V(X) = E[(X - \mu)^{2}] = E(X^{2}) - \mu^{2} = \sigma_{x}^{2}$$

In the discrete case, this is equivalent to

$$V(X) = \sigma^2 = \sum_{\text{All } X} (x - \mu)^2 P(x)$$

E. <u>Standard deviation of X</u>: The standard deviation is the positive square root of the variance, i.e.

$$SD(X) = \sigma = \sqrt{\sigma^2}$$

F. <u>Examples</u>.

X	p(x)	xp (x)	(x - μ _x) ²	$(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{2}\mathbf{p}(\mathbf{x})$
2	1/36	2/36	25	25/36
3	2/36	6/36	16	32/36
4	3/36	12/36	9	27/36
5	4/36	20/36	4	16/36
6	5/36	30/36	1	5/36
7	6/36	42/36	0	0
8	5/36	40/36	1	5/36
9	4/36	36/36	4	16/36
10	3/36	30/36	9	27/36
11	2/36	22/36	16	32/36
12	1/36	12/36	25	25/36

1. Hayes (p. 96) gives the probability distribution for the number of spots appearing on two fair dice. Find the mean and variance of that distribution.

 $\Sigma xp(x) = 252/36 = 7 = \mu_x$. The variance $\sigma^2 = 210/36 = 35/6 = 55/6$. (NOTE: There is a simpler solution to this problem, which takes advantage of the independence of the two tosses.)

2. Consider our earlier coin tossing experiment. If we toss a coin three times, how many times do we expect it to come up heads? And, what is the variance of this distribution?

X	p (x)	xp(x)	(x - μ _x)²	$(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{2}\mathbf{p}(\mathbf{x})$
0	1/8	0	2.25	2.25/8
1	3/8	3/8	0.25	0.75/8
2	3/8	6/8	0.25	0.75/8
3	1/8	3/8	2.25	2.25/8

 $\Sigma xp(x) = 1.5$. So (not surprisingly) if we toss a coin three times, we expect 1.5 heads. And, the variance = 6/8 = 3/4.

G. EXPECTATION RULES AND DEFINITIONS. a, b are any given constants. X, Y are random variables. The following apply. [NOTE: we'll use a few of these now and others will come in handy throughout the semester.]

- 1. $E(X) = \mu_x = \Sigma xp(x)$ (discrete case)
- 2. $E(g(X)) = \Sigma g(x)p(x) = \mu_{g(X)}$ (discrete case)

NOTE: g(X) is some function of X. So, for example, if X is discrete and $g(X) = X^2$, then $E(X^2) = \sum x^2 p(x)$.

3.
$$V(X) = E[(X - E(X))^2] = E(X^2) - E(X)^2 = \sigma^2_X$$

4.
$$E(a) = a$$

That is, the expectation of a constant is the constant, e.g. E(7) = 7

5.
$$E(aX) = a * E(X)$$

e.g. if you multiple every value by 2, the expectation doubles.

6. $E(a \pm X) = a \pm E(X)$

e.g. if you add 7 to every case, the expectation will increase by 7

- 7a. $E(a \pm bX) = a \pm bE(X)$
- 7b. $E[(a \pm X) * b] = (a \pm E(X)) * b$
- 8. E(X + Y) = E(X) + E(Y). (The expectation of a sum = the sum of the expectations. This rule extends as you would expect it to when there are more than 2 random variables, e.g. E(X + Y + Z) = E(X) + E(Y) + E(Z))

9. If X and Y are independent,

E(XY) = E(X)E(Y). (This rule extends as you would expect it to for more than 2 random variables, e.g. E(XYZ)=E(X)E(Y)E(Z).)

10.
$$COV(X,Y) = E[(X - E(X)) * (Y - E(Y)] = E(XY) - E(X)E(Y)$$

Question: What is COV(X,X)?

11. If X and Y are independent,

COV(X,Y) = 0. (However, if COV(X,Y) = 0, this does not necessarily mean that X and Y are independent.)

12. V(a) = 0

A constant does not vary, so the variance of a constant is 0, e.g. V(7) = 0.

13. $V(a \pm X) = V(X)$

Adding a constant to a variable does not change its variance.

- 14. $V(a \pm bX) = b^2 * V(X) = \sigma^2_{bX}$ [Proof is below]
- 15. $V(X \pm Y) = V(X) + V(Y) \pm 2 COV(X,Y) = \sigma^{2}_{X \pm Y}$
- 16. If X and Y are independent, $V(X \pm Y) = V(X) + V(Y)$

However, it is generally NOT TRUE that V(XY) = V(X)V(Y)

PROBLEMS: HINT. Keep in mind that μ_X and σ_X are constants.

1. Prove that $V(X) = E[(X - \mu_X)^2] = E(X^2) - \mu_X^2$. HINT: Rules 4, 5, and 8 are especially helpful here.

Equation	Explanation
$E[(X - \mu_X)^2] =$	Original Formula for the variance.
$E(X^2 - 2X \mu_X + \mu_X^2) =$	Expand the square
$E(X^2) - E(2\mu_X X) + E(\mu_X^2) =$	Rule 8: $E(X + Y) = E(X) + E(Y)$. That is, the expectation of a sum = Sum of the expectations
$E(X^2) - 2\mu_X E(X) + \mu_X^2 =$	Rule 5: $E(aX) = a * E(X)$, i.e. Expectation of a constant times a variable = The constant times the expectation of the variable; and Rule 4: $E(a) = a$, i.e. Expectation of a constant = the constant
$E(X^2) - u_X^2$	Remember that $E(X) = \mu_X$, hence $2\mu_X E(X) = 2\mu_X^2$. QED.

Solution.

2. Prove that $V(aX) = a^2 * V(X)$. HINT: Rules 3 and 5 are especially helpful.

Solution.	Let Y	= aX.	Then,
-----------	-------	-------	-------

Equation	Explanation
$V(Y) = E(Y^2) - E(Y)^2 =$	Rule 3: $V(X) = E[(X - E(X))^2] = E(X^2) - E(X)^2 = \sigma^2_X$, i.e. Definition of the variance
$E(a^2 X^2) - E(aX)^2 =$	Substitute for Y. Since $Y = aX$, $Y^2 = a^2X^2$
$a^{2} E(X^{2}) - a^{2} E(X)^{2} =$	Rule 5: $E(aX) = a * E(X)$, i.e. Expectation of a constant times a variable = The constant times the expectation of the variable
$a^{2}(E(X^{2}) - E(X)^{2}) =$	Factor out a ²
$a^2 V(X)$	Rule 3: Definition of the variance, i.e. $V(X) = E(X^2) - E(X)^2$. QED.

3. Let $Z = (X - \mu_X)/\sigma_X$. Find E(Z) and V(Z). HINT: Apply rules 7b and 14.

Equation	Explanation
$E(Z) = E\left(\frac{X - \mu_X}{\sigma_X}\right) =$	Definition of Z
$\frac{E(X)-\mu_X}{\sigma_X}=$	Rule 7b: $E[(a \pm X) * b] = (a \pm E(X)) * b.$ Remember, $a = -\mu_X$, $b = 1/\sigma_X$.
0	Remember $E(X) = \mu_X$, so the numerator = 0. QED

Solution. In this problem, $a = -\mu_X$, $b = 1/\sigma_X$.

Intuitively, the above makes sense; subtract the mean from every case and the new mean becomes zero. Now, for the variance,

Equation	Explanation
$V(Z) = V\left(\frac{X - \mu_X}{\sigma_X}\right) =$	Definition of Z
$\frac{1}{\sigma_x^2} * V(X) =$	Rule 14: $V(a \pm bX) = b^2 * V(X) = \sigma^2_{bX}$. Remember, $b = 1/\sigma_X$
1	Remember, $V(X) = \sigma_X^2$, hence σ_X^2 appears in both the numerator and denominator. QED.

NOTE: This is called a <u>z-score transformation</u>. As we will see, such a transformation is extremely useful. Note that, if Z = 1, the score is one standard deviation above the mean.

4. Use a different method than the one presented earlier for finding the mean and variance for the number of heads obtained in 3 coin tosses.

Solution. Let $X_1 = 1$ if the first coin toss comes up heads, 0 otherwise. In this case, $X_1^2 = X_1$ (since $1^2 = 1$ and $0^2 = 0$). Let X_2 and X_3 be the corresponding random variables for the second and third tosses. This question is asking you to find $E(X_1 + X_2 + X_3)$ and $V(X_1 + X_2 + X_3)$. Note that

Formula	Explanation
$E(X_1) = E(X_2) = E(X_3) = .5$	Each coin has a 50% chance of a heads
$E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) =$.5 + .5 + .5 = 1.5.	Rule 8: $E(X + Y) = E(X) + E(Y)$, i.e. Expectation of a sum = Sum of the Expectations
$V(X_1) = V(X_2) = V(X_3) = E(X_1^2) - E(X_1)^2 =$.525 = .25.	Rule 3: Definition of the variance. Since $X_1^2 = X_1$, $E(X_1^2) = E(X_1) = .5$; and $E(X_1)^2 = .5^2 = .25$
$V(X_1 + X_2 + X_3) = V(X_1) + V(X_2) + V(X_3) =$.25 + .25 + .25 = .75	Rule 16: If X and Y are independent, $V(X \pm Y) = V(X) + V(Y)$