Expectations

Expectations. (See also Hays, Appendix B; Harnett, ch. 3).
A. The expected value of a random variable is the arithmetic mean of that variable, i.e. $E(X)=\mu$. As Hays notes, the idea of the expectation of a random variable began with probability theory in games of chance. Gamblers wanted to know their expected long-run winnings (or losings) if they played a game repeatedly. This term has been retained in mathematical statistics to mean the long-run average for any random variable over an indefinite number of trials or samplings.
B. Discrete case: The expected value of a discrete random variable, X , is found by multiplying each X -value by its probability and then summing over all values of the random variable. That is, if X is discrete,

$$
E(X)=\sum_{\text {All } X} x p(x)=\mu_{X}
$$

C. Continuous case: For a continuous variable X ranging over all the real numbers, the expectation is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x=\mu_{x}
$$

D. Variance of X : The variance of a random variable X is defined as the expected (average) squared deviation of the values of this random variable about their mean. That is,

$$
V(X)=E\left[(X-\mu)^{2}\right]=E\left(X^{2}\right)-\mu^{2}=\sigma_{x}^{2}
$$

In the discrete case, this is equivalent to

$$
V(X)=\sigma^{2}=\sum_{\text {AllX }}(x-\mu)^{2} P(x)
$$

E. Standard deviation of X: The standard deviation is the positive square root of the variance, i.e.

$$
S D(X)=\sigma=\sqrt{\sigma^{2}}
$$

F. Examples.

1. Hayes (p. 96) gives the probability distribution for the number of spots appearing on two fair dice. Find the mean and variance of that distribution.

\mathbf{x}	$\mathbf{p}(\mathbf{x})$	$\mathbf{x p}(\mathbf{x})$	$\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{\mathbf{2}}$	$\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}} \mathbf{2}^{\mathbf{2}} \mathbf{p}(\mathbf{x})\right.$
$\mathbf{2}$	$1 / 36$	$2 / 36$	25	$25 / 36$
$\mathbf{3}$	$2 / 36$	$6 / 36$	16	$32 / 36$
$\mathbf{4}$	$3 / 36$	$12 / 36$	9	$27 / 36$
$\mathbf{5}$	$4 / 36$	$20 / 36$	4	$16 / 36$
$\mathbf{6}$	$5 / 36$	$30 / 36$	1	$5 / 36$
$\mathbf{7}$	$6 / 36$	$42 / 36$	0	0
$\mathbf{9}$	$5 / 36$	$40 / 36$	1	$5 / 36$
$\mathbf{1 0}$	$4 / 36$	$36 / 36$	4	$16 / 36$
$\mathbf{1 1}$	$3 / 36$	$30 / 36$	$27 / 36$	
$\mathbf{1 2}$	$2 / 36$	$22 / 36$	16	$32 / 36$
	$1 / 36$	$12 / 36$	25	$25 / 36$

$\Sigma \mathrm{xp}(\mathrm{x})=252 / 36=7=\mu_{\mathrm{x}}$. The variance $\sigma^{2}=210 / 36=35 / 6=55 / 6$. (NOTE: There is a simpler solution to this problem, which takes advantage of the independence of the two tosses.)
2. Consider our earlier coin tossing experiment. If we toss a coin three times, how many times do we expect it to come up heads? And, what is the variance of this distribution?

\mathbf{x}	$\mathbf{p}(\mathbf{x})$	$\mathbf{x p}(\mathbf{x})$	$\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{2}$	$\left(\mathbf{x}-\boldsymbol{\mu}_{\mathbf{x}}\right)^{\mathbf{2}} \mathbf{p}(\mathbf{x})$
$\mathbf{0}$	$1 / 8$	0	2.25	$2.25 / 8$
$\mathbf{1}$	$3 / 8$	$3 / 8$	0.25	$0.75 / 8$
$\mathbf{2}$	$3 / 8$	$6 / 8$	0.25	$0.75 / 8$
$\mathbf{3}$	$1 / 8$	$3 / 8$	2.25	$2.25 / 8$

$\Sigma \mathrm{xp}(\mathrm{x})=1.5$. So (not surprisingly) if we toss a coin three times, we expect 1.5 heads. And, the variance $=6 / 8=3 / 4$.
G. EXPECTATION RULES AND DEFINITIONS. a, b are any given constants. X, Y are random variables. The following apply. [NOTE: we'll use a few of these now and others will come in handy throughout the semester.]

1. $\quad \mathrm{E}(\mathrm{X})=\mu_{\mathrm{x}}=\boldsymbol{\Sigma} \mathbf{x p}(\mathrm{x})$ (discrete case)
2. $\quad \mathbf{E}(\mathrm{g}(\mathrm{X}))=\boldsymbol{\Sigma} \mathrm{g}(\mathrm{x}) \mathrm{p}(\mathrm{x})=\boldsymbol{\mu}_{\mathrm{g}(\mathrm{X})}$ (discrete case)

NOTE: $g(X)$ is some function of X. So, for example, if X is discrete and $g(X)=X^{2}$, then $E\left(X^{2}\right)=$ $\Sigma \mathrm{x}^{2} \mathrm{p}(\mathrm{x})$.
3. $\quad \mathrm{V}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}(\mathrm{X}))^{2}\right]=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=\boldsymbol{\sigma}^{2} \mathrm{X}$
4. $\quad E(a)=a$

That is, the expectation of a constant is the constant, e.g. $\mathrm{E}(7)=7$
5. $\quad \mathbf{E}(\mathbf{a X})=\mathbf{a} * E(X)$
e.g. if you multiple every value by 2 , the expectation doubles.
6. $E(a \pm X)=a \pm E(X)$
e.g. if you add 7 to every case, the expectation will increase by 7

7a. $\quad \mathbf{E}(\mathbf{a} \pm \mathbf{b X})=\mathbf{a} \pm \mathbf{b E}(\mathbf{X})$
7b. $\quad E[(a \pm X) * b]=(a \pm E(X))^{*} b$
8. $\mathbf{E}(\mathbf{X}+\mathbf{Y})=\mathbf{E}(\mathbf{X})+\mathbf{E}(\mathbf{Y})$. (The expectation of a sum = the sum of the expectations. This rule extends as you would expect it to when there are more than 2 random variables, e.g. $\mathrm{E}(\mathrm{X}+\mathrm{Y}+\mathrm{Z})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})+\mathrm{E}(\mathrm{Z}))$
9. If X and Y are independent,
$\mathbf{E}(\mathbf{X Y})=\mathbf{E}(\mathbf{X}) \mathbf{E}(\mathbf{Y})$. (This rule extends as you would expect it to for more than 2 random variables, e.g. $E(X Y Z)=E(X) E(Y) E(Z)$.
10. $\quad \operatorname{COV}(\mathrm{X}, \mathrm{Y})=\mathrm{E}[(\mathrm{X}-\mathrm{E}(\mathrm{X})) *(\mathrm{Y}-\mathrm{E}(\mathrm{Y})]=\mathrm{E}(\mathrm{XY})-\mathrm{E}(\mathrm{X}) \mathrm{E}(\mathrm{Y})$

Question: What is $\operatorname{COV}(\mathrm{X}, \mathrm{X})$?
11. If X and Y are independent,
$\operatorname{COV}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$. (However, if $\operatorname{COV}(\mathrm{X}, \mathrm{Y})=0$, this does not necessarily mean that X and Y are independent.)
12. $\quad V(a)=0$

A constant does not vary, so the variance of a constant is 0 , e.g. $\mathrm{V}(7)=0$.
13. $\quad V(a \pm X)=V(X)$

Adding a constant to a variable does not change its variance.
14. $\quad \mathbf{V}(\mathbf{a} \pm \mathbf{b X})=\mathbf{b}^{2} * \mathbf{V}(\mathbf{X})=\boldsymbol{\sigma}^{2}{ }_{b x} \quad$ [Proof is below]
15. $\quad \mathbf{V}(\mathrm{X} \pm \mathrm{Y})=\mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{Y}) \pm 2 \operatorname{COV}(\mathrm{X}, \mathrm{Y})=\boldsymbol{\sigma}^{2} \mathrm{X} \pm \mathrm{Y}$
16. If X and Y are independent, $V(X \pm Y)=V(X)+V(Y)$

However, it is generally NOT TRUE that $\mathrm{V}(\mathrm{XY})=\mathrm{V}(\mathrm{X}) \mathrm{V}(\mathrm{Y})$

PROBLEMS: HINT. Keep in mind that μ_{X} and σ_{X} are constants.

1. Prove that $\mathrm{V}(\mathrm{X})=\mathrm{E}\left[\left(\mathrm{X}-\mu_{\mathrm{X}}\right)^{2}\right]=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mu_{\mathrm{X}}{ }^{2}$. HINT: Rules 4, 5, and 8 are especially helpful here.

Solution.

Equation	Explanation
$E\left[\left(X-\mu_{X}\right)^{2}\right]=$	Original Formula for the variance.
$E\left(X^{2}-2 X \mu_{X}+\mu_{X}^{2}\right)=$	Expand the square
$E\left(X^{2}\right)-E\left(2 \mu_{X} X\right)+E\left(\mu_{X}^{2}\right)=$	Rule 8: $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$. That is, the expectation of a sum $=$ Sum of the expectations
$E\left(X^{2}\right)-2 \mu_{X} E(X)+\mu_{X}^{2}=$	Rule 5: $\mathrm{E}(\mathrm{aX})=\mathrm{a}$ * $\mathrm{E}(\mathrm{X})$, i.e. Expectation of a constant times a variable $=$ The constant times the expectation of the variable; and Rule 4: E(a) = a, i.e. Expectation of a constant = the constant
$E\left(X^{2}\right)-u_{X}^{2}$	Remember that $\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}$, hence $2 \mu_{X} E(X)=2 \mu_{X}{ }^{2}$. QED.

2. Prove that $\mathrm{V}(\mathrm{aX})=\mathrm{a}^{2} * \mathrm{~V}(\mathrm{X})$. HINT: Rules 3 and 5 are especially helpful.

Solution. Let $\mathrm{Y}=\mathrm{aX}$. Then,

Equation	Explanation
$V(Y)=E\left(Y^{2}\right)-E(Y)^{2}=$	Rule 3: $\mathrm{V}(\mathrm{X})=\mathrm{E}\left[(\mathrm{X}-\mathrm{E}(\mathrm{X}))^{2}\right]=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2}=$ $\sigma^{2} \mathrm{x}$, i.e. Definition of the variance
$E\left(a^{2} X^{2}\right)-E(a X)^{2}=$	Substitute for Y. Since $\mathrm{Y}=\mathrm{aX}, \mathrm{Y}^{2}=\mathrm{a}^{2} \mathrm{X}^{2}$
$a^{2} E\left(X^{2}\right)-a^{2} E(X)^{2}=$	Rule 5: $\mathrm{E}(\mathrm{aX})=\mathrm{a} * \mathrm{E}(\mathrm{X})$, i.e. Expectation of a constant times a variable $=$ The constant times the expectation of the variable
$a^{2}\left(E\left(X^{2}\right)-E(X)^{2}\right)=$	Factor out a${ }^{2}$
$a^{2} V(X)$	Rule 3: Definition of the variance, i.e. $\mathrm{V}(\mathrm{X})=$ $\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}(\mathrm{X})^{2} . \mathrm{QED}$.

3. Let $\mathrm{Z}=\left(\mathrm{X}-\mu_{\mathrm{X}}\right) / \sigma_{\mathrm{X}}$. Find $\mathrm{E}(\mathrm{Z})$ and $\mathrm{V}(\mathrm{Z})$. HINT: Apply rules 7b and 14.

Solution. In this problem, $\mathrm{a}=-\mu_{\mathrm{x}}, \mathrm{b}=1 / \sigma_{\mathrm{x}}$.

Equation	Explanation
$E(\mathrm{Z})=E\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)=$	Definition of Z
$\frac{E(X)-\mu_{X}}{\sigma_{X}}=$	Rule $7 \mathrm{~b}: \mathrm{E}[(\mathrm{a} \pm \mathrm{X}) * \mathrm{~b}]=(\mathrm{a} \pm \mathrm{E}(\mathrm{X})) * \mathrm{~b}$. Remember, $\mathrm{a}=-\mu_{\mathrm{X}}, \mathrm{b}=1 / \sigma_{\mathrm{X}}$.
0	Remember $\mathrm{E}(\mathrm{X})=\mu_{\mathrm{X}}$, so the numerator $=0$. QED

Intuitively, the above makes sense; subtract the mean from every case and the new mean becomes zero. Now, for the variance,

Equation	Explanation
$V(\mathrm{Z})=V\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)=$	Definition of Z
$\frac{1}{\sigma_{X}^{2}} * V(X)=$	Rule 14: $\mathrm{V}(\mathrm{a} \pm \mathrm{bX})=\mathrm{b}^{2} * \mathrm{~V}(\mathrm{X})=\sigma^{2} \mathrm{bx}$. Remember, $\mathrm{b}=1 / \sigma_{\mathrm{X}}$
1	Remember, $\mathrm{V}(\mathrm{X})=\sigma_{X}{ }^{2}$, hence $\sigma_{X}{ }^{2}$ appears in both the numerator and denominator. QED.

NOTE: This is called a z-score transformation. As we will see, such a transformation is extremely useful. Note that, if $Z=1$, the score is one standard deviation above the mean.
4. Use a different method than the one presented earlier for finding the mean and variance for the number of heads obtained in 3 coin tosses.

Solution. Let $\mathrm{X}_{1}=1$ if the first coin toss comes up heads, 0 otherwise. In this case, $\mathrm{X}_{1}{ }^{2}=\mathrm{X}_{1}$ (since $1^{2}=1$ and $0^{2}=0$). Let X_{2} and X_{3} be the corresponding random variables for the second and third tosses. This question is asking you to find $E\left(X_{1}+X_{2}+X_{3}\right)$ and $V\left(X_{1}+X_{2}+X_{3}\right)$. Note that

Formula	Explanation
$\mathrm{E}\left(\mathrm{X}_{1}\right)=\mathrm{E}\left(\mathrm{X}_{2}\right)=\mathrm{E}\left(\mathrm{X}_{3}\right)=.5$	Each coin has a 50% chance of a heads
$\mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}\right)=\mathrm{E}\left(\mathrm{X}_{1}\right)+\mathrm{E}\left(\mathrm{X}_{2}\right)+\mathrm{E}\left(\mathrm{X}_{3}\right)=$	Rule 8: $\mathrm{E}(\mathrm{X}+\mathrm{Y})=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y})$, i.e.
$.5+.5+.5=1.5$.	Expectation of a sum = Sum of the
	Expectations
$\mathrm{V}\left(\mathrm{X}_{1}\right)=\mathrm{V}\left(\mathrm{X}_{2}\right)=\mathrm{V}\left(\mathrm{X}_{3}\right)=\mathrm{E}\left(\mathrm{X}_{1}{ }^{2}\right)-\mathrm{E}\left(\mathrm{X}_{1}\right)^{2}=$	Rule 3: Definition of the variance. $.5-.25=.25$.
Since $\mathrm{X}_{1}{ }^{2}=\mathrm{X}_{1}, \mathrm{E}\left(\mathrm{X}_{1}{ }^{2}\right)=\mathrm{E}\left(\mathrm{X}_{1}\right)=.5 ;$ and $\mathrm{E}\left(\mathrm{X}_{1}\right)^{2}=.5^{2}=.25$	
$\mathrm{~V}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}\right)=\mathrm{V}\left(\mathrm{X}_{1}\right)+\mathrm{V}\left(\mathrm{X}_{2}\right)+\mathrm{V}\left(\mathrm{X}_{3}\right)=$	$\mathrm{Rule} 16:$ If X and Y are independent, $\mathrm{V}(\mathrm{X} \pm$
$.25+.25+.25=.75$	$\mathrm{Y})=\mathrm{V}(\mathrm{X})+\mathrm{V}(\mathrm{Y})$

