
 Supplemental notes on Semipartial Correlations 
 

This discussion borrows heavily from Applied Multiple Regression/Correlation Analysis 
for the Behavioral Sciences, by Jacob and Patricia Cohen (1975 edition; there is also an updated 
2003 edition now).   
 
When I presented the following diagram, I pointed out that this was just one example of the 
many ways that the Xs and Ys could be interrelated: 
 
 

 
 

I also presented the output for this specific empirical example: 
Correlations

1.000 .846 .268
.846 1.000 -.107
.268 -.107 1.000

INCOME
EDUC
JOBEXP

Pearson Correlation
INCOME EDUC JOBEXP

 
Model Summary

.919a .845 .827 4.07431
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), JOBEXP, EDUCa. 
 

Coefficientsa

-7.097 3.626 -1.957 .067 -14.748 .554
1.933 .210 .884 9.209 .000 1.490 2.376 .846 .913 .879 .989 1.012
.649 .172 .362 3.772 .002 .286 1.013 .268 .675 .360 .989 1.012

(Constant)
EDUC
JOBEXP

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Zero-order Partial Part
Correlations

Tolerance VIF
Collinearity Statistics

Dependent Variable: INCOMEa. 
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However, in February 2004, Eugene Paik, a graduate student at UNLV, emailed me and pointed 
out that the diagram didn’t seem to correspond to the empirical example!  (Later, Catherine Liu, 
graduate student at Notre Dame, made the same observation.)  Paik’s argument was as follows: 

 
Given 

 Y is the dependent variable. 

 X1 and X2 are independent variables. 
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 In other words,  0≥C

 In other words, the sum of the squares of all semi-partial 

correlations cannot exceed R2. 

 

Because 

 In term of the variance that each semi-partial correlation 

accounts for in Y, they are mutually exclusive by definition. 

 In other words, the areas corresponding to semi-partial 

correlations do not overlap in the Ballantine diagram. 

 

However 

 In the example provided, this does not hold. 

 The sum of squared semi-partial (part) correlations from the 

SPFF example is 0.8792 + 0.3602, which is around 0.9022. 

 But R2 (0.845) is smaller!!! 

 If you calculate the area C, you get around -0.0591. That's 

negative 0.0591. 
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What does it mean for the sum of squared semi-partial 

correlations to exceed R2? What does it mean for the area of C to 

be negative? 

 

Incidentally, I've seen even more extreme examples where C is 

largely negative (e.g., -0.41). 

 

To summarize, the diagram implies that R2
Y12 = B + C + D , sr2

1 = B, sr2
2 = D, so 

R2
Y12 ≥ sr2

1 + sr2
2  because B + C + D  ≥ B + D. 

However, in the actual example, R2
Y12 = .845, sr2

1 = .773, sr2
2 = .1296, hence 

R2
Y12  < sr2

1 + sr2
2  because .845  <  .902. 

 
Paik is right; while I think the diagram is very useful and works for many situations, it doesn’t 
accurately describe the specific example I am using.  Here is the response I sent to Paik: 
 

The example I use (which may be a good reason for not using it!) is an example of what 
Cohen and Cohen call Cooperative Suppression.  Note that 
 
• Educ and Jobexp are negatively correlated with each other (which makes sense; get 

more of one, you tend to get less of the other) 
 
• Nonetheless, both have positive correlations and effects on income (which again 

makes sense; the more education and job experience you have, the more you can 
expect to make) 

 
• As a result, the semipartial (part) correlations are actually larger than the zero-order 

correlations are. 
 
In the attached excerpt from the 1975 edition of their book (which I think explains this 
more clearly than the 2003 edition does) they show how this can lead to the sort of 
situation you describe, i.e. the sum of the squared semipartials is greater than the R^2.  
(Their whole chapter is worth reading if you can get a copy of it.) 
 
When cooperative suppression is present, the ballantine presentation breaks down a bit, 
because, as you say, you can't draw a negative area!  Indeed, in their discussion, Cohen 
and Cohen present several diagrams, but they don't present one for cooperative 
suppression. 
 

The diagram presented is fine when, say, X1, X2 and Y are all positively correlated; but 
that isn’t the case in the current empirical example. 
 
We will discuss the idea of suppression further during Stats II.  Meanwhile, the attached 
page from Cohen and Cohen (1975) briefly discusses the idea. 
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