Rather than repeat material that is already well-covered elsewhere, read the Stata Manual’s *Introduction to Survey Commands* first. It explains how and why the survey design and the survey data collection need to be taken into account when doing your analysis. Pay particular attention to the introduction and skim the rest. There are just a few additional points I want to illustrate here.

Most of the analysis we have done so far assumes that cases were selected via simple random sampling – the equivalent of drawing names out of a hat. In reality, sampling schemes are often much more complicated than that. Survey data (I am quoting a lot from the Stata Manual here) are characterized by

- **sampling weights**, aka probability weights or pweights: “In sample surveys, observations are selected through a random process, but different observations may have different probabilities of selection,” e.g. blacks may be oversampled
- **cluster sampling**: “Individuals are not sampled independently in most survey designs. Collections of individuals (for example, counties, city blocks, or households) are typically sampled as a group known as a cluster.”
- **stratification**: “In surveys, different groups of clusters are often sampled separately. These groups are called strata. For example, the 254 counties of a state might be divided into two strata, say, urban counties and rural counties. Then 10 counties might be sampled from the urban stratum, and 15 from the rural stratum”

Failure to take the sampling scheme into account can lead to inaccurate point estimates and/or flawed estimates of the standard errors.

The svyset command and the svy: prefix. Your data need to be *svyset* first. The *svyset* command tells Stata everything it needs to know about the data set’s sampling weights, clustering, and stratification. You only need to *svyset* your data once. Hopefully, the provider of your data has told you what you need for the *svyset* command or has even *svyset* the data for you. If not, you are going to have to do some reading or get some help to figure out how to do it yourself.

If the data are already *svyset*, then typing *svyset* by itself will show what the settings are.

```
. webuse nhanes2f, clear
. svyset
    pweight: finalwgt
    VCE: linearized
    Single unit: missing
    Strata 1: stratid
    SU 1: psuid
    FPC 1: <zero>
```

. sum finalwgt stratid psuid

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>finalwgt</td>
<td>10337</td>
<td>11320.85</td>
<td>7304.457</td>
<td>2000</td>
<td>79634</td>
</tr>
<tr>
<td>stratid</td>
<td>10337</td>
<td>16.65986</td>
<td>9.499389</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>psuid</td>
<td>10337</td>
<td>1.482151</td>
<td>0.4997055</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The pweight variable is finalwgt. The summary statistics show you that each person in the sample represents anywhere from 2,000 to 79,634 people in the population. Put another way, if the pweight for a person is 10,000, that means that the respondent had once chance in 10,000 of being selected for the sample.

Once the data are svyset, you need to remember to use the svy: prefix with your commands. For example, instead of typing

```
. reg weight height age i.female i.black
```

You should type

```
. svy: reg weight height age i.female i.black
```

(running regress on estimation sample)
Notice some differences in the output. You are told that this sample represents a population of 117 million people. You don’t get an ANOVA table anymore. The coefficients are somewhat different, reflecting the fact that cases are not being weighted equally anymore. The changes in coefficients and also the fact that clustering and stratification are taken into account affect the significance tests and confidence intervals.

However, there are some important differences between the analysis of survey and non-survey data that you need to be aware of.

Linear regression: Some of the statistics and tests you are used to using are inappropriate. There are numerous things you are used to doing with linear regression that will not work with svyset data. This is at least partly because, with survey data, assumptions that cases are independent of each other are violated. In other cases, it may be because Stata hasn’t figured out how to adapt the test or procedure to svyset data.

Example 1: Wald tests work but incremental F tests do not:

```
. svy: reg weight height age
          (running regress on estimation sample)
Survey: Linear regression
Number of strata  =        31                Number of obs      =      10337
Number of PSUs   =        62                Population size    =  117023659
Design df        =         31
F(   2,     30)    =    1803.49                Prob > F           =     0.0000
R-squared        =     0.2785
------------------------------------------------------------------------------
|             Linearized                     |             Linearized                     | | | | | |
|---|---|---|---|---|---|---|
|             |     Coef.    Std. Err.   t    P>|t|   |     Coef.    Std. Err.   t    P>|t| |
|-------------|------------------------|--------|------|------------------------|--------|
|          weight |   .8486177   .0148894   56.99  0.000     |   .8182505   .0789849   10.48  0.000     |
|          height |   .1593711   .0118398   13.46  0.000     |   .1352236   .0789849   17.23  0.000     |
|          _cons  |  -77.78301   2.514129   -30.94  0.000    |  -82.91061   72.65541   -11.42  0.000    |
------------------------------------------------------------------------------
```

. est store m1
. svy: reg weight height age i.female i.black
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 31 Number of obs = 10337
Number of PSUs = 62 Population size = 117023659
Design df = 31
F(4, 28) = 880.32
Prob > F = 0.0000
R-squared = 0.2887

--
| Linearized
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------|-----------------------|-------------------------|-------|---------|-------------------------|
| | | | | | |
height | .7409099 .0274549 26.99 0.000 .6849151 .7969046
age | .1520647 .0117481 12.94 0.000 .1281044 .1760251
1.female | -2.924562 .6054516 -4.83 0.000 -4.159389 -1.689736
1.black | 4.033541 .7436242 5.42 0.000 2.516909 5.550172
_cons | -58.19333 4.909523 -11.85 0.000 -68.20637 -48.18029
--

. est store m2
. test 1.female 1.black

Adjusted Wald test

(1) 1.female = 0
(2) 1.black = 0

F(2, 30) = 20.86
Prob > F = 0.0000

. ftest m1 m2
Linearized vce not allowed
r(198);

So, in general you should use Wald tests for hypothesis testing. However, you can also use the
nestreg command (without factor variables) since nestreg basically just does Wald tests on
each model.

. nestreg, quietly: svy: reg weight (height age) (female black)

Block 1: height age
Block 2: female black

<table>
<thead>
<tr>
<th>Block</th>
<th>Design</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>df</td>
</tr>
<tr>
<td>1</td>
<td>1803.49</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>20.86</td>
<td>2</td>
</tr>
</tbody>
</table>

Similar issues come up with techniques like logistic regression that use maximum likelihood
estimation. See the appendix.
Example 2: Numerous post-estimation diagnostic commands do not work

```
  . quietly svy: reg weight height age female black
dfbeta
option dfbeta() not allowed after svy estimation
r(198);

  . estat hettest
invalid subcommand hettest
r(321);

  . estat imtest
invalid subcommand imtest
r(321);

  . rvfplot
option resid not allowed
r(198);

  . estat lvr2plot
invalid subcommand lvr2plot
r(321);
```

Given that these are diagnostic tests, you may want to do exploratory analyses that ignore the svysetting of the data.

Subsample analyses. Another thing to be careful of is subsample analyses, e.g. analyzing men only. With non-svy data, you usually just create an extract first which has only your desired cases; or you include an `if` qualifier with your command, e.g. something like

```
reg y x1 x2 x3 if female==0
```

With svy data, however, that kind of approach can, under certain conditions, seriously bias your results, i.e. the standard error calculations can be wrong if all the data are not available. Instead, you should use the `subpop` option to specify your sample. As UCLA explains in its Stata FAQs, “When the subpopulation option(s) is used, only the cases defined by the subpopulation are used in the calculation of the estimate, but all cases are used in the calculation of the standard errors.” UCLA further adds that “Using `if` in the `subpop` option does not remove cases from the analysis. The cases excluded from the subpopulation by the `if` are still used in the calculation of the standard errors, as they should be.” So, do something like this:
. svy, subpop(if female==0): reg weight height age i.black
(running regress on estimation sample)

Survey: Linear regression

Number of strata = 31 Number of obs = 10337
Number of PSUs = 62 Population size = 117023659
Subpop. no. of obs = 31 Subpop. size = 60901624
Design df = 31 F(3, 29) = 243.60
Prob > F = 0.0000 R-squared = 0.1146

--
| Linearized | | | | |
| weight | Coef. | Std. Err. | t | P>|t| | 95% Conf. Interval |
|-------------|---------|-----------|----------|------|------------------------|
height | .60758 | .03609 | 16.84 | 0.000| .53398 , .68118 |
age | .18996 | .01441 | 13.18 | 0.000| .16057 , .21935 |
i.black | 7.696 | .98351 | 7.82 | 0.000| 5.6899 , 9.7015 |
_cons | -41.510 | 5.8151 | -7.14 | 0.000| -53.3699 , -29.6505 |
--

Some commands do not work with svy: Some commands, like summarize, do not work
with the svy: prefix. Sometimes you can find an alternative command that does, e.g.
svy: mean.

. webuse nhanes2f
. svy: summarize diabetes black weight height
summarize is not supported by svy with vce(linearized); see help svy estimation for a
list of Stata estimation commands that are supported by svy r(322);

. svy: mean diabetes black weight height
(running mean on estimation sample)

Survey: Mean estimation

Number of strata = 31 Number of obs = 10335
Number of PSUs = 62 Population size = 116997257
Design df = 31
--
<p>| Linearized | | | | |</p>
<table>
<thead>
<tr>
<th>Mean</th>
<th>Std. Err.</th>
<th></th>
<th>95% Conf. Interval</th>
</tr>
</thead>
</table>
diabetes | .03429 | .00182 | .03057 , .037996 |
black | .09564 | .01280 | .06957 , .12170 |
weight | 71.911 | 1.6703 | 71.57065 , 72.25198 |
height | 168.46 | 1.47185 | 168.1645 , 168.7649 |
--

Note that standard deviations are not reported by the mean command. estat sd reports
subpopulation standard deviations based on the estimation results from mean and svy: mean.
. estat sd

<table>
<thead>
<tr>
<th>Mean Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>diabetes</td>
</tr>
<tr>
<td>black</td>
</tr>
<tr>
<td>weight</td>
</tr>
<tr>
<td>height</td>
</tr>
</tbody>
</table>

For information on other svy postestimation commands, type `help svy_estat`.

Another example: `svy:` won’t work in combination with the `sw:` prefix, because stepwise methods are not considered appropriate with svy data.

. `sw, pe(.05): svy: logit diabetes black weight height`
svy is not supported by stepwise
r(199);

Also, user-written post-estimation commands may or may not work after using the `svy:` prefix (and if they do work you should try to check to see if they work correctly. For example, even Stata’s old `adjust` command does not work correctly with `svy` data.)

Conclusion. svy data are not that hard to work with. But, you do have to understand some of the important differences that do exist. For more, see Stata’s SVY Manual. Other good references (as of January 22, 2015) include

http://www.ats.ucla.edu/stat/stata/faq/ (see the lower part of the page)

Appendix: Maximum Likelihood – and Statistics based on it – are inappropriate (optional)

With survey data, the ML assumptions that cases are independent of each other are violated. As a result, with commands like logit you can’t get several statistics you are used to, e.g. Model LR Chi^2, BIC, AIC. You get F statistics and T statistics instead of chi-squares and zs. You have to do Wald tests instead of LR Chi^2 model contrasts. The following will illustrate this.

```stata
.webuse nhanes2f, clear
. * Constrained model
. svy: logit diabetes female black
(running logit on estimation sample)
```

Survey: Logistic regression

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef. Std. Err. t P></td>
</tr>
<tr>
<td>diabetes</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>.2937317 .1198141 2.45 0.020 .0493693 .5380941</td>
</tr>
<tr>
<td>black</td>
<td>.644294 .1157506 5.57 0.000 .408219 .8803689</td>
</tr>
<tr>
<td>_cons</td>
<td>-3.582378 .100637 -35.60 0.000 -3.787628 -3.377127</td>
</tr>
</tbody>
</table>

Already some key differences in the output are obvious. We got an F test instead of a Model LR Chi^2 statistic. For each coefficient we got a T statistic instead of a Z statistic. No Log Likelihood for the model was reported. The Population size line told us how many people are in the population that this sample represents (about 117 million). Now let’s see what happens when we try to contrast nested models.

```stata
.est store m1
. svy: logit diabetes female black weight height
(running logit on estimation sample)
```

Survey: Logistic regression

<table>
<thead>
<tr>
<th></th>
<th>Linearized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coef. Std. Err. t P></td>
</tr>
<tr>
<td>diabetes</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>-.1591092 .1481466 -1.07 0.291 -.4612563 .1430379</td>
</tr>
<tr>
<td>black</td>
<td>.5026699 .1270514 3.96 0.000 .2435468 .761793</td>
</tr>
<tr>
<td>weight</td>
<td>.0290168 .0033496 8.66 0.000 .0221852 .0358484</td>
</tr>
<tr>
<td>height</td>
<td>-.0574331 .0081596 -7.04 0.000 -.0740747 -.0407915</td>
</tr>
<tr>
<td>_cons</td>
<td>4.149243 1.295284 3.20 0.003 1.507495 6.790992</td>
</tr>
</tbody>
</table>

Analyzing Survey Data: Some key issues to be aware of
. est store m2
. lrtest m1 m2, all
lrtest is not appropriate with survey estimation results
r(322);

The `lrtest` command does not work because the assumptions behind it are violated with complicated survey designs. (It won’t even work if you include the `force` option.) Hence, we don’t get a likelihood ratio chi-square contrast. We also don’t get BIC or AIC statistics because the ML assumptions behind those statistics are also violated. Instead, we have to use `test` commands.

. * Use Wald test instead
. test weight height

Adjusted Wald test

(1) [diabetes]weight = 0
(2) [diabetes]height = 0

F(2, 30) = 40.50
Prob > F = 0.0000