Soc 63993, Homework #7 Answer Key: Nonlinear effects/ Intro to path analysis

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/

Last revised February 20, 2015

Problem 1. The files *nonlinhw.do* and *nonlinhw.dta* will generate the computer runs you need for this problem. Copy them from the course web page. You will also need to install curvefit, available from SSC. (You will need to refer to curvefit's help file so you know what the functions are.) Run the program a few lines at a time; otherwise you will always be erasing your graphs.

There are 4 variables in nonlinhw.dta: X1 (the IV), Y1, Y2, and Y3 (the DVs). The Stata program does scatterplots of X1 versus each DV and then generates other graphs that model the nonlinear relationship. For each DV in turn, you are to do the following:

- Examine each scatterplot. Explain why the relationship is nonlinear and what type of nonlinearity appears to be present. Put another way, explain the rationale for the followup graph of the nonlinear relationship.
 - o For Part I only, show a different set of Stata commands that could graph the nonlinear relationship.
 - o For Parts I and II only, show how the same models could be estimated using the regress and/or glm commands.
 - For Y3 only, two different Curvefits are presented (Parts III and IV). Explain why, based on the graphics only, it would be difficult to decide which nonlinear specification was most appropriate, and how theory might help you to choose.
- Discuss what problems result from a linear (mis)specification. The graphs will help you here.
- For Parts I, II, III, present a substantive example, real or hypothetical, that the model you have estimated might be appropriate for. Explain why it is appropriate. Do not use any of the examples already given in class.

First off, here is nonlinhw.do:

```
version 12.1
use https://www3.nd.edu/~rwilliam/statafiles/nonlinhw.dta, clear
********** Part 1.
* Plot of x1 with y1
estimates clear
scatter y1 x1, scheme(sj)
curvefit y1 x1, f(1 4)
* HW: Show another way to graph this model
* HW: Show how to estimate this model using regress and/or glm
***** Part 2.
* Plot of x1 with y2
estimates clear
scatter y2 x1
curvefit y2 x1, f(1 0)
* HW: Show how to estimate this model using regress and/or glm
********* Part 3.
* Plot of x1 with y3.
estimates clear
scatter y3 x1
mkspline xle0 0 xqt0 = x1, marginal
reg y3 x1
predict linear
reg y3 xle0 xgt0
predict spline
scatter y3 x1 || line linear x1 || line spline x1, sort scheme(sj)
****** Part 4.
* As this shows, a polynomial model would also be plausible for y3.
* In practice, it is often hard to tell just from the scatterplot what
* transformation is best, so theory is important.
estimates clear
curvefit y3 x1, f(1 4)
```

The scatterplot of X1 with Y1 is

```
. use https://www3.nd.edu/~rwilliam/statafiles/nonlinhw.dta, clear
 ********* Part 1.
. * Plot of x1 with y1
. estimates clear
. scatter y1 x1, scheme(sj)
```


The U-shaped, curvilinear form suggests that a polynomial model is called for. There appears to be one "bend" so the model should include terms for X1 and X1². The curvefit command estimates the linear and quadratic models and generates the graph.

```
. curvefit y1 x1, f(1 4)
```

Curve	Estimati	on between yl	and x1
 Va	ariable	Linear	Quadratic
b0	_cons	4.5251426 24.71 0.0000	2.966442 78.56 0.0000
b1	_cons 	1.00287 9.64 0.0000	1.00287 70.16 0.0000
b2	_cons 		.50280663 55.37 0.0000
Statis	stics N r2_a	61 .60516076	61 .99254275
			legend: b/t/p

As we can see, the linear model (where Y1 is regressed only on X1) at first underestimates several values of y1, then overestimates, then goes back to underestimating them. By way of contrast, the quadratic model (where Y1 is regressed on X1 and $X1^2$) matches the observed data almost perfectly.

We can also graph the relationship using these Stata commands:

```
. scatter y1 x1 || lfit y1 x1 || qfit y1 x1
```


To estimate the quadratic model using the regress command (which gives the same estimates that curvefit did),

. reg y1 x1 c.x1#c.x1

Source	SS +	df 	MS		Number of obs F(2 58)	= 61 = 3993 93
Model Residual	308.65331 2.24113791	2 154. 58 .038	326655 640309		Prob > F R-squared	= 0.0000 = 0.9928 = 0.9925
Total	310.894448	60 5.18	157413		Root MSE	= 0.9925 = .19657
yl	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x1	1.00287	.0142947	70.16	0.000	.9742561	1.031484
c.xl#c.xl	.5028066	.0090808	55.37	0.000	.4846294	.5209838
_cons	2.966442	.037761	78.56	0.000	2.890855	3.042029

Such a model might explain the link between political ideology and political activism: the more extreme one is in his or her political views (in either direction), the more likely he or she is to be politically active. Those in the middle of the road are least active. The tendency is more pronounced for right-wing ideologues than for left-wing.

For Y2, the plot with X1 is

This suggests exponential growth. The points increase slowly at first, and then grow by larger and larger amounts. Plotting a linear and exponential model with curvefit,

. curvefit y2 x1, f(1 0)

Curve Estimation between y2 and x1

_____ Variable | Linear Growth _____ b0 _cons | 83.005824 2.083302 5.348.830.00000.0000 _____ b1 _cons | 64.366035 1.496315 7.2917.340.00000.0000 Statistics
 N
 61
 61

 r2_a
 .46518882
 .9519786
 N _____

As curvefit shows, if we just use a linear model with Y2 dependent, we will first underestimate the values of y2, then over-estimate them, then go back to underestimating them again.

We could estimate a model where we computed the log of y2 and regressed it on x. The potential problem with this approach is that the log of 0 is undefined; ergo, any cases with 0 (or for that matter negative) values will get dropped from the analysis. Further, most of us don't think in terms of logs of variables; we would rather see how X is related to the unlogged Y. It is therefore often better to estimate this model:

 $E(Y) = e^{(\alpha + \beta X)}$

When you do this, Y itself can equal 0; all that is required is that its expected value be greater than zero. In Stata, we can estimate this as a generalized linear model with link log. The command and results are

. glm y2 x1, link(log)

Generalized li	inear models			No. o	f obs =	61
Optimization	: ML			Resid	ual df =	59
				Scale	parameter =	1631.748
Deviance	= 96273	.1221		(1/df) Deviance =	1631.748
Pearson	= 96273	.1221		(1/df) Pearson =	1631.748
Variance funct	tion: $V(u) = 1$	1		[Gaus	sian]	
Link function	: g(u) =	ln(u)		[Log]		
				AIC	=	10.26752
Log likelihood	d = -311.15	94035		BIC	=	96030.58
		OIM				
y2	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
x1	1.496316	.0824864	18.14	0.000	1.334645	1.657986
_cons	2.0833	.2256518	9.23	0.000	1.641031	2.52557

Exponential/Growth models are good for variables such as income or sales that we expect to increase by percentage rather than absolute amounts. For example, we might predict that each dollar increase in cost would reduce sales by 5%.

For Y3, the plot is

Here, there seem to be two pieces to the data. For X < 0, there is a small slope. Then, the slope becomes much greater. Ergo, a piecewise regression seems called for, and the mkspline command will make that possible:

. mkspline xle0 0 xgt0 = x1, marginal
. reg y3 x1

Source	SS	df	MS		Number of obs	= 61
	+				F(1, 59)	= 386.41
Model	3852.18882	1 3852	.18882		Prob > F	= 0.0000
Residual	588.18379	59 9.96	921678		R-squared	= 0.8675
	+				Adj R-squared	= 0.8653
Total	4440.37261	60 74.0	062102		Root MSE	= 3.1574
у3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	4.513444	.2296068	19.66	0.000	4.054001	4.972886
_cons	6.329963	.4042645	15.66	0.000	5.521032	7.138895

. predict linear

(option xb assumed; fitted values)

The linear model is a pretty good fit, but we can do better.

. reg y3 xle0 xgt0

Source	SS	df	MS		Number of obs	= 61
+	+				F(2, 58)	=41949.15
Model	4437.30505	2 2218	3.65252		Prob > F	= 0.0000
Residual	3.06756763	58 .052	2889097		R-squared	= 0.9993
+	+				Adj R-squared	= 0.9993
Total	4440.37261	60 74.0	062102		Root MSE	= .22998
у3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
xle0	.9967843	.0373837	26.66	0.000	.9219526	1.071616
xgt0	7.033319	.0668686	105.18	0.000	6.899467	7.167171
_cons	.968499	.0588672	16.45	0.000	.8506636	1.086334

. predict spline

```
. scatter y3 x1 || line linear x1 || line spline x1, sort scheme(sj)
```


As the graph shows, if we just estimate a linear model, we will first underestimate y3, then overestimate, then underestimate again. The fit of the piecewise model is near perfect in this case.

⁽option xb assumed; fitted values)

Substantive example: Years of college education may have much more impact on earnings than years of elementary education.

Finally, we present an alternative curvefit for Y3. Instead of doing piecewise regression, we fit a quadratic model:

. estimates clear
. curvefit y3 x1, f(1 4)

Curve Estimation between y3 and x1

	Variable	Linear	Quadratic
b0	cons 	6.3299633 15.66 0.0000	2.9758679 18.74 0.0000
 b1	cons _	4.5134436 19.66 0.0000	4.5134436 75.09 0.0000
 b2	_cons 		1.0819662 28.33 0.0000
 Sta	tistics N r2_a	61 .86529216	61 .99076762

legend: b/t/p

As we see, the quadratic model also seems to provide a very good fit to the observed data. Unless relationships are extremely strong, plots of the data may reveal that nonlinearity is present, but won't necessarily make it obvious what the best solution is. Theory should guide you as you attempt to determine what solution is most appropriate.

Problem 2. A sociologist believes that the following model describes the relationships between X1, X2, X3 and X4. All variables are in standardized form. The hypothesized value of each path is included in the diagram.

a. Write out the structural equation for each endogenous variable, using both the names for the paths (e.g. β_{42}) and the estimated value of the path coefficient.

$$X_{2} = \beta_{21}X_{1} + u = .4X_{1} + u$$
$$X_{3} = \beta_{32}X_{2} + v = .5X_{2} + v$$
$$X_{4} = \beta_{42}X_{2} + \beta_{43}X_{3} + w = -.7X2 + .3X3 + w$$

b. Part of the correlation matrix is shown below. Determine the complete correlation matrix. (Remember, variables are standardized. You can use either normal equations or Sewell Wright, but you might want to use both as a double-check.)

	x1	x2	x3	x4
x1	1.0000			
x2	0.4000	1.0000		
x3	?	?	1.0000	
x4	-0.2200	?	?	1.0000

Here is the complete correlation matrix:

	x1	x2	x3	x4
x1 x2 x3	$\begin{vmatrix} 1.0000 \\ 0.4000 \\ 0.2000 \end{vmatrix}$	1.0000	1.0000	
x4	-0.2200	-0.5500	-0.0500	1.0000

To confirm, using normal equations (in this case though, it may be easier just to look at the diagram and use Sewell Wright):

$$\begin{split} \rho_{31} &= \beta_{31} + \beta_{21}\beta_{32} = 0 + .4*.5 = .20 \\ \rho_{32} &= \beta_{32} + \beta_{31}\beta_{21} = .5 + 0*.4 = .5 \\ \rho_{42} &= \beta_{42} + \beta_{32}\beta_{43} + \beta_{41}\beta_{21} + \beta_{43}\beta_{31}\beta_{21} = -.7 + .5*.3 + 0*.4 + .3*0*.4 = -.55 \\ \rho_{43} &= \beta_{43} + \beta_{41}\beta_{31} + \beta_{42}\beta_{32} + \beta_{41}\beta_{21}\beta_{32} + \beta_{42}\beta_{21}\beta_{31} = .3 + 0*0 + -.7*.5 + 0*.4*.5 + -.7*.4*0 = -.05 \end{split}$$

c. (5 pts) Decompose the correlation between X3 and X4 into

• Correlation due to direct effects

.3

• Correlation due to indirect effects

0

Correlation due to common causes

-.35

d. Suppose the above model is correct, but instead the researcher believed in and estimated the following model:

What conclusions would the researcher likely draw? In particular, what would the researcher conclude about the effect of changes in X3 on X4? Why would he make these mistakes? Discuss the consequences of this mis-specification.

In the mis-specified model, the standardized coefficient will be the same as the bivariate correlation, -.05. The researcher will therefore conclude that increases in X3 lead to decreases in X4. However, in the correctly specified model, we see that the direct effect of X3 on X4 is .3, i.e. increases in X3 lead to increases in X4. By failing to take into account the common cause, X2, the research will not only mis-estimate the magnitude but also the direction of the effect of X3 on X4. If policy issues were involved, policy makers might do exactly the opposite of what they should do.

e. [Optional] Confirm your answer to 2b using Stata, i.e. create a pseudo-replication of the data using corr2data and then use one of the methods described in the notes for making sure that you can reproduce the estimates of the path coefficients given in the diagram.

We can use pathreg or sem (pathreg from UCLA must be installed),

. matrix input corr = (1,.4,.2,-.22\.4,1,.5,-.55\.2,.5,1,-.05\-.22,-.55,-.05,1) . corr2data x1 x2 x3 x4, n(100) corr(corr) (obs 100) . pathreg (x2 x1) (x3 x1 x2) (x4 x1 x2 x3) _____ Coef. Std. Err. t P>|t| x2 | Beta _____ x1 | .4 .092582 4.32 0.000 _cons | 3.07e-09 .0921179 0.00 1.000 .4 n = 100 R2 = 0.1600 sqrt(1 - R2) = 0.9165_____ x3 | Coef. Std. Err. t P>|t| Beta -----+---+ x1 | 4.27e-09 .0959412 0.00 1.000 x2 | .5 .0959412 5.21 0.000 _cons | 1.36e-09 .0874908 0.00 1.000 4.27e-09 .5 _____ _____ n = 100 R2 = 0.2500 sqrt(1 - R2) = 0.8660x4 | Coef. Std. Err. t P>|t| Beta ____+ _____ x1-8.76e-09.0883883-0.001.000x2-.7.1-7.000.000x3.3.09354143.210.002 -8.76e-09 -.7 .3 _cons | -8.66e-09 .0806032 -0.00 1.000 n = 100 R2 = 0.3700 sqrt(1 - R2) = 0.7937. sem (x2 <- x1) (x3 <- x1 x2) (x4 <- x1 x2 x3) Endogenous variables Observed: x2 x3 x4 Exogenous variables Observed: x1 Fitting target model: Structural equation model Number of obs = 100 Estimation method = ml Log likelihood = -519.3618

	 Coef.	OIM Std. Err.	Z	P> z	[95% Conf.	Interval]
Structural						
x2 <-						
xl	.4	.0916515	4.36	0.000	.2203663	.5796337
_cons	3.07e-09	.0911921	0.00	1.000	1787332	.1787332
x3 <-	 					
x2	.5	.0944911	5.29	0.000	.3148008	.6851992
x1	4.27e-09	.0944911	0.00	1.000	1851992	.1851992
_cons	1.36e-09	.0861684	0.00	1.000	168887	.168887
	+					
x2	7	.0979796	-7.14	0.000	8920364	5079635
x3	.3	.0916515	3.27	0.001	.1203663	.4796337
x1	-8 76e-09	0866025	-0.00	1 000	- 1697379	1697379
_cons	-8.66e-09	.0789747	-0.00	1.000	1547875	.1547875
Variance	+					
	I 8316	117606			6302842	1 097217
0 v3	7425	1050054			5627537	9796581
e	./=25	.1000004			.3027337	0220120
e.x4	.0237	.0002045			.4/2/131	.0229120
LR test of mod	del vs. satur	ated: chi2(0) =	0.00,	Prob > chi2 =	

The following post-estimation command after sem can confirm our estimates of direct, indirect and total effects (but not correlation due to common cause, alas):

Direct effects									
	 Coef.	OIM Std. Err.	z	P> z	[95% Conf	. Interval]			
Structural x2 <-									
xl	.4	.0916515	4.36	0.000	.2203663	.5796337			
x3 <-	 								
x2	.5	.0944911	5.29	0.000	.3148008	.6851992			
xl	4.27e-09	.0944911	0.00	1.000	1851992	.1851992			
x4 <-	+								
x2	7	.0979796	-7.14	0.000	8920364	5079635			
x3	.3	.0916515	3.27	0.001	.1203663	.4796337			
x1	-8.76e-09	.0866025	-0.00	1.000	1697379	.1697379			

Indirect effects

	Coef.	OIM Std. Err.	Z	P> z	[95% Conf	. Interval]
Structural x2 <-						
x1	0	(no path)				
x3 <-						
x2	0	(no path)				
xl	.2	.0594018	3.37	0.001	.0835746	.3164253
x4 <-	 					
x2 x3	.15	.0283473	5.29	0.000	.0944402	.2055598
x1	22	.066453	-3.31	0.001	3502455	0897545

Total effects

		OIM				
	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
Structural x2 <-						
x1	.4	.0916515	4.36	0.000	.2203663	.5796337
x3 <-						
x2	.5	.0944911	5.29	0.000	.3148008	.6851992
x1	.2	.0979796	2.04	0.041	.0079635	.3920365
x4 <-						
x2	55	.1019979	-5.39	0.000	7499122	3500878
x3	.3	.0916515	3.27	0.001	.1203663	.4796337
x1	22	.09755	-2.26	0.024	4111945	0288055

The complete Stata code for problem 2 is

```
version 12.1
* Homework 7, Path analysis problem
clear all
matrix input corr = (1,.4,.2,-.22\.4,1,.5,-.55\.2,.5,1,-.05\-.22,-.55,-.05,1)
corr2data x1 x2 x3 x4, n(100) corr(corr)
corr
pathreg (x2 x1) (x3 x1 x2) (x4 x1 x2 x3)
sem (x2 <- x1) (x3 <- x1 x2) (x4 <- x1 x2 x3)
estat teffects</pre>
```