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Assumptions about prior knowledge. This handout attempts to summarize and synthesize 
the basics of Multiple Regression that should have been learned in an earlier statistics course. It 
is therefore assumed that most of this material is indeed “review” for the reader. (Don’t worry 
too much if some items aren’t review; I know that different instructors cover different things, and 
many of these topics will be covered again as we go through the semester.) Those wanting more 
detail and worked examples should look at my course notes for Grad Stats I. Basic concepts such 
as means, standard deviations, correlations, expectations, probability, and probability 
distributions are not reviewed.  
In general, I present formulas either because I think they are useful to know, or because I think 
they help illustrate key substantive points. For many people, formulas can help to make the 
underlying concepts clearer; if you aren’t one of them you will probably still be ok.  
 

Linear regression model 
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β i = partial slope coefficient (also called partial regression coefficient, metric coefficient). It 
represents the change in E(Y) associated with a one-unit increase in Xi when all other IVs are 
held constant. 
α = the intercept. Geometrically, it represents the value of E(Y) where the regression surface (or 
plane) crosses the Y axis. Substantively, it is the expected value of Y when all the IVs equal 0. 

ε = the deviation of the value Yj from the mean value of the distribution given X. This error term 
may be conceived as representing (1) the effects on Y of variables not explicitly included in the 
equation, and (2) a residual random element in the dependent variable. 
 
Parameter estimation (Metric Coefficients): In most situations, we are not in a position to 
determine the population parameters directly. Instead, we must estimate their values from a finite 
sample from the population. The sample regression model is written as 
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where a is the sample estimate of α and bk is the sample estimate of βk. 

http://www3.nd.edu/%7Erwilliam/
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Computation of bk 
Case Formula(s) Comments 

All Cases ( ) 1' 'X X X Y−Β =


 This is the general formula but it requires 
knowledge of matrix algebra to understand that I 
won’t assume you have. 

1 IV case 
2
x

xy

s
s

b =  
Sample covariance of X and Y divided by the 
variance of X 

Computation 
of a (all cases) a y b xk k

k

K

= −
=
∑

1

 
Compute the betas first. Then multiply each beta 
times the mean of the corresponding X variable and 
sum the results. Subtract from the mean of y. 

 

Question. Suppose bk = 0 for all variables, i.e. none of the IVs have a linear effect on Y. What is 
the predicted value of Y? What is the predicted value of Y if all Xs have a value of 0? 
 

Standardized coefficients. The IVs and DV can be in an infinite number of metrics. Income 
can be measured in dollars, education in years, intelligence in IQ points. This can make it 
difficult to compare effects. Hence, some like to “standardize” variables. In effect, a Z-score 
transformation is done on each IV and DV. The transformed variables then have a mean of zero 
and a variance of 1. Rescaling the variables also rescales the regression coefficients. Formulas 
for the standardized coefficients include 

1 IV case ′ =b ryx  In the one IV case, the standardized 
coefficient simply equals the correlation 
between Y and X 

General Case 
′ =b b

s
sk k
x

y

k*  
As this formula shows, it is very easy to 
go from the metric to the standardized 
coefficients. There is no need to actually 
compute the standardized variables and 
run a new regression. 

 
We interpret the standardized coefficients as follows: a one standard deviation increase in Xk 
results in a b’k standard deviation increase in Y.  
Standardized coefficients are somewhat popular because variables are in a common (albeit 
weird) metric. Hence, it is possible to compare magnitudes of effects, causing them to sometimes 
be used as a measure of the “importance” of a variable. They are easier to work with 
mathematically. The metric of many variables is arbitrary and unintuitive anyway. Hence, you 
might as well make the scaling standard across variables. 
Nevertheless, standardized effects tend to be looked down upon because they are not very 
intuitive. Worse, they can be very misleading; for example, when making comparisons across 
groups. As we will see, Duncan argues this point quite forcefully. 
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The ANOVA Table: Sums of squares, degrees of freedom, mean squares, and F. 
Before doing other calculations, it is often useful or necessary to construct the ANOVA 
(Analysis of Variance) table. There are four parts to the ANOVA table: sums of squares, degrees 
of freedom, mean squares, and the F statistic. 

Sums of squares. Sums of squares are actually sums of squared deviations about a mean. For 
the ANOVA table, we are interested in the Total sum of squares (SST), the regression sum of 
squares (SSR), and the error sum of squares (SSE; also known as the residual sum of squares). 
 

Computation of sums of squares 
Case Formula(s) 

General case: 
SST y y SSR SSE

SSR y y SST SSE

SSE y y e SST SSR
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Question: What do SSE and SSR equal if it is always the case that y yj j=  , i.e. you make 
“perfect” predictions every time? Conversely, what do SSR and SSE equal if it is always the case 
that y yj = , i.e. for every case the predicted value is the mean of Y? 

Other calculations. The rest of the ANOVA table easily follows (K = # of IVs, not counting the 
constant): 

Source SS DF MS F 

Regression (or 
explained) 

SSR K MSR =  
SSR/K 

F =  
MSR / MSE 

Error (or 
residual) 

SSE N - K - 1 MSE = 
SSE/(N - K - 1) 

 

Total SST N - 1 MST = 
SST/(N - 1) 

 
An alternative formula for F, which is sometimes useful when the original data are not available 
(e.g. when reading someone else’s article) is 

F R N K
R K

=
− −

−

2

2
1

1
* ( )

( ) *
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The above formula has several interesting implications, which we will discuss shortly. 

Uses of the ANOVA table. As you know (or will see) the information in the ANOVA table has 
several uses: 

• The F statistic (with df = K, N-K-1) can be used to test the hypothesis that ρ2 = 0 (or 
equivalently, that all betas equal 0). In a bivariate regression with a two-tailed alternative 
hypothesis, F can test whether β = 0. F (along with N and K) can be used to compute R2. 

• MST = the variance of y, i.e. sy
2. 

• SSR/SST = R2. Also, SSE/SST = 1 - R2. 

• MSE is used to compute the standard error of the estimate (se). 

• SSE can be used when testing hypotheses concerning nested models (e.g. are a subset of the 
betas equal to 0?) 

 

Multiple R and R2. Multiple R is the correlation between Y and Y . It ranges between 0 and 1 
(it won’t be negative.) Multiple R2 is the amount of variability in Y that is accounted for 
(explained) by the X variables. If there is a perfect linear relationship between Y and the IVs, R2 
will equal 1. If there is no linear relationship between Y and the IVs, R2 will equal 0. Note that R 
and R2 are the sample estimates of ρ and ρ2. 
Some formulas for R2. 

R2 = SSR/SST Explained sum of squares over total sum of 
squares, i.e. the ratio of the explained 
variability to the total variability. 

R F K
N K F K

2

1
=

− − +
*

( ) ( * )
 

This can be useful if F, N, and K are known 

One IV case only: 

R b2 2= ′  

Remember that, in standardized form, 
correlations and covariances are the same. 

 
Incidentally, R2 is biased upward, particularly in small samples. Therefore, adjusted R2 is 
sometimes used. The formula is 

Adjusted R2 = −
− −
− −







 = − −

−
− −

1
1 1

1
1 1

1
1

2
2( )( )

( )
( ) *

N R
N K

R
N

N K
 

Note that, unlike regular R2, Adjusted R2 can actually get smaller as additional variables are 
added to the model. One of the claimed benefits for Adjusted R2 is that it “punishes” you for 
including extraneous and irrelevant variables in the model. Also note that, as N gets bigger, the 
difference between R2 and Adjusted R2 gets smaller and smaller. 

Sidelight. Why is R2 biased upward? McClendon discusses this in “Multiple Regression and 
Causal Analysis”, 1994, pp. 81-82. 
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Basically he says that sampling error will always cause R2 to be greater than zero, i.e. even if no 
variable has an effect R2 will be positive in a sample. When there are no effects, across multiple 
samples you will see estimated coefficients sometimes positive, sometimes negative, but either 
way you are going to get a non-zero positive R2. Further, when there are many Xs for a given 
sample size, there is more opportunity for R2 to increase by chance. 
 
So, adjusted R2 wasn't primarily designed to “punish” you for mindlessly including extraneous 
variables (although it has that effect), it was just meant to correct for the inherent upward bias in 
regular R2. 
 

Standard error of the estimate. The standard error of the estimate (se) indicates how close 
the actual observations fall to the predicted values on the regression line. If ε ∼ N(0, σε

2), then 
about 68.3% of the observations should fall within ± 1se units of the regression line, 95.4% 
should fall within ± 2se units, and 99.7% should fall within ± 3se units. The formula is 

s SSE
N K

MSEe = − −
=

1
  

Standard errors. bk is a point estimate of βk. Because of sampling variability, this estimate 
may be too high or too low. sbk, the standard error of bk, gives us an indication of how much the 
point estimate is likely to vary from the corresponding population parameter. We will discuss 
standard errors more when we talk about multicollinearity. For now I will simply present this 
formula and explain it later. 
Let H = the set of all the X (independent) variables. 
Let Gk = the set of all the X variables except Xk. 
The following formulas then hold: 

General case: 
s

R
R N K

s
sb

YH

X G

y

X
k

k k k

=
−

− − −
1

1 1

2

2( ) *( )
*  

This formula makes it clear how 
standard errors are related to N, K, R2, 
and to the inter-correlations of the IVs. 

 

Hypothesis Testing. With the above information from the sample data, we can test 
hypotheses concerning the population parameters. Remember that hypotheses can be one-tailed 
or two-tailed, e.g. 

H0: β1 = 0  or H0: β1 = 0 
HA: β1 ≠ 0   HA: β1 > 0 
The first is an example of a two-tailed alternative. Sufficiently large positive or negative values 
of b1 will lead to rejection of the null hypothesis. The second is an example of a 1-tailed 
alternative. In this case, we will only reject the null hypothesis if b1 is sufficiently large and 
positive. If b1 is negative, we automatically know that the null hypothesis should not be rejected, 
and there is no need to even bother computing the values for the test statistics. You only reject 
the null hypothesis if the alternative is better. 
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EXAMPLE: 

H0: β1 = 0 
HA: β1 > 0 
N = 1000, b1 = -10, t1 = -50. Should you reject the Null? (HINT: Most people say reject. Most 
people are wrong. Explain why.) 
 
With regression, we are commonly interested in the following sorts of hypotheses: 
 

Tests about a single coefficient. To test hypotheses such as 

H0: β1 = 0  or H0: β1 = 0 
HA: β1 ≠ 0   HA: β1 > 0 
we typically use a T-test. The T statistic is computed as 

T b
s

b
sN K

k k

b

k

bk k

− − =
−

=1
0β  

The latter equality holds if we hypothesize that βk = 0. The degrees of freedom for T are N-K-1. 
If the T value is large enough in magnitude, we reject the null hypothesis. 
If the alternative hypothesis is two-tailed, we also have the option of using confidence intervals 
for hypothesis testing. The confidence interval is 

b t s b t sk b k k bk k
− ≤ ≤ +( * ) ( * )α αβ

2 2
 

If the null hypothesis specifies a value that lies within the confidence interval, we will not reject 
the null. If the hypothesized value is outside the confidence interval, we will reject. Suppose, for 
example, bk = 2, sbk = 1, and the “critical” value for T is 1.96. In this case, the confidence 
interval will range from .04 to 3.96. If the null hypothesis is βk = 0, we will reject the null, 
because 0 does not fall within the confidence interval. Conversely, if the null hypothesis is βk = 
1, we will not reject the null hypothesis, because 1 falls within the confidence interval. 
If the alternative value is two-tailed and there is only one IV, we can also use the F-statistic. In 
the one IV case, F = T2. 
 

Global F Test: Tests about all the beta coefficients. We may want to test whether any of the 
betas differ from zero, i.e. 

H0: β1 = β2 = β3 = ... = βK = 0 

HA: At least one β ≠ 0. 

This is equivalent to a test of whether ρ2 = 0 (since if all the betas equal 0, ρ2 must equal 0). The 
F statistic, with d.f. = K, N-K-1, is appropriate. As noted above, F = MSR/MSE; or equivalently, 

F R N K
R K

=
− −

−

2

2
1

1
* ( )

( ) *
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Question: Looking at the last formula, what happens to F as R2 increases? N increases? K 
increases? What are the implications of this? 
Note that 

• Larger R2 produce bigger values of F. That is, the stronger the relationship is between the DV 
and the IVs, the bigger F will be. 

• Larger sample sizes also tend to produce bigger values of F. The larger the sample, the less 
uncertainty there is whether population parameters actually differ from 0. Particularly with a 
large sample, it is necessary to determine whether statistically significant results are also 
substantively meaningful. Conversely, in a small sample, even large effects may not be 
statistically significant. 

• If additional variables do not produce large enough increases in R2, then putting them in the 
model can actually decrease F. (Why?) Hence, if there is too much “junk” in the model, it 
may be difficult to detect important effects. 

• The F statistic does not tell you which effects are significant, only that at least one of them is. 

• In a bivariate regression (and only in a bivariate regression) Global F = T2. 
 

Tests about a subset of coefficients. We sometimes wish to test hypotheses concerning a 
subset of the variables in a model. For example, suppose a model includes 3 demographic 
variables (X1, X2, and X3) and 2 personality measures (X4 and X5). We may want to determine 
whether the personality measures actually add anything to the model, i.e. we want to test 

H0: β4 = β5 = 0 
HA: β4 and/or β5 ≠ 0 
Another common example is when we have multi-category qualitative variables (e.g. Religion, 
where 1= Catholic, 2 = Protestant, 3 = Other). Here, we compute a set of Dummy Variables (see 
Appendix A) and then test whether the entire set of dummies is statistically significant. (e.g. X4 
= 1 if Catholic, 0 otherwise; X5 = 1 if Protestant, 0 otherwise. Note that there are always at least 
one fewer dummy variables than there are categories, and that one category (the “excluded 
category”) is coded 0 on all the dummies.) 
 
We will talk about such situations much more later in the semester. For now we will simply note 
that there are various ways to conduct such tests: 

• An incremental F test can be used. This procedure is described in the optional Appendix 
C. It requires estimating an unconstrained model (in which all variables of interest are 
included in the model) and a constrained model (in which the subset of variables to be 
tested are excluded from the model. In Stata the user-written ftest command makes 
this easy. Note that the exact same cases must be used for estimating both the constrained 
and unconstrained models. 

• A Wald test can be used. A Wald test requires only the estimation of the unconstrained 
model in which all variables of interest are included. The Stata test and testparm 
commands make this easy.  
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Appendix A: Dummy Variables [Important but not too hard. Read this on your own and 
get help from the professor or TA if needed] 
 
(1) We frequently want to examine the effects of both quantitative and qualitative 
independent variables on quantitative dependent variables. Dummy variables provide a means by 
which qualitative variables can be included in regression analysis. The procedure for computing 
dummy variables is as follows: 
 

(a) Suppose there are L groups. You will compute L-1 dummy variables. For 
example, suppose you had two categories for race, White and Black. In this example, L = 2, 
since you have two groups. Hence, one dummy variable would be computed. If we had 3 groups 
(for example, White, Black, and Other) we would construct 2 dummy variables.  
 

(b) The first group is coded 1 on the first dummy variable. The other L-1 groups are 
coded 0. On the second dummy variable (if there is one), the second group is coded 1, and the 
other L-1 groups are coded zero. Repeat this procedure for each of the L-1 dummy variables.  

 
(c) Note that, under this procedure, the Lth group is coded 0 on every dummy 

variable. We refer to this as the “excluded category.” Another way of thinking of it is as the 
“reference group” against which others will be compared. 

 
For example, suppose our categories were White, Black, and Other, and we wanted 

White to be the excluded category. Then, 
 
Dummy1 = 1 if Black, 0 if Other, 0 if White 
Dummy2 = 0 if Black, 1 if Other, 0 if White 

 
Incidentally, note that if we wanted to compute it, Dummy3 = 1 - Dummy1 - Dummy2. 

We do not include Dummy3 in our regression models, because if we did, we would run into a 
situation of perfect collinearity. (This should make intuitive sense: If we know someone is not 
Black and not Other, then we know that the person is White.)  

 
Also note that, before computing dummies, you may want to combine some categories if 

the Ns for one or more categories are very small. For example, you would have near-perfect 
multicollinearity if you had a 1000 cases and one of your categories only had a dozen people in 
it. In the present case, if there were very few others, you might just want to compute a single 
dummy variable that stood for White/NonWhite. 
 
 (2) When a single dummy variable has been constructed and included in the equation, a T 
test can be used. When there are multiple dummy variables, an incremental F test or Wald Test is 
appropriate. 
 
(3) EXAMPLE: The dependent variable is income, coded in thousands of dollars. BLACK = 
1 if Black, 0 otherwise; OTHER = 1 if other, 0 otherwise. White is the “excluded” category, and 
Whites are coded 0 on both BLACK and OTHER. 
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Variable        B 
 
BLACK        -10.83 
OTHER        - 5.12     
(Constant)    29.83 
 
For whites, predicted income = 29.83 -(10.83 * 0) - (5.12 * 0) = 29.83. 
For blacks, predicted income = 29.83 -(10.83 * 1) - (5.12 * 0) = 19.00. 
For others, predicted income = 29.83 -(10.83 * 0) - (5.12 * 1) = 24.71. 
 
In this simple example, the constant is the mean for members of the excluded category, Whites. 
The coefficients for BLACK and OTHER show how the means of Blacks and Others differ from 
the mean of Whites. That is why Whites can be thought of as the “reference group”: the dummy 
variables show how other groups differ from them. 
 
In a more complicated example, in which there were other independent variables, you can think 
of the dummy variable coefficients as representing the average difference between a White, a 
Black and an Other who were otherwise identical, i.e. had the same values on the other IVs.  
 
Example: 
 
Variable        B 
 
BLACK        - 4.00 
OTHER        - 2.10 
EDUCATION    + 1.50     
(Constant)   +12.00 
 
This model says that, if a White, a Black, and an Other all had the same level of education, on 
average the Black would make $4,000 less than the White, while the Other would make on 
average $2,100 less than the White. So if, for example, each had 10 years of education, 
 
white: predicted income = 12.00 -(4.00* 0) - (2.10 * 0) + (1.50 * 10) = 27.0 
black: predicted income = 12.00 -(4.00* 1) - (2.10 * 0) + (1.50 * 10) = 23.0 
other: predicted income = 12.00 -(4.00* 0) - (2.10 * 1) + (1.50 * 10) = 24.9. 
 
As a substantive aside, note that the dummy variable coefficients in this hypothetical example 
became much smaller once education was added to the model. This often happens in real world 
examples. In this case, a possible explanation might be that much, but not all, of the differences 
in mean income between the races reflects the fact that Whites tend to have more years of 
education than do other racial groups. 
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Appendix B: Semipartial and Partial correlations/ Stepwise regression  
[Review on your own] 
Semipartial correlations (also called part correlations) indicate the “unique” contribution of a 
variable. They are sometimes used as a way of assessing the “importance” of a variable.  
Specifically, the squared semipartial correlation for a variable tells us how much R2 will decrease 
if that variable is removed from the regression equation. Some relevant formulas are 

2 2 2 2 2 2

2

*(1 ) * ,

* 1 *   
k k k

k k

k YH YG k X G k k

k k X G k k

sr R R b R b Tol

sr b R b Tol

′ ′= − = − =

′ ′== − =  

As before, H = the set of all the X (independent) variables, Gk = the set of all the X variables 
except Xk. Thus, to get Xk’s unique contribution to R2, first regress Y on all the X’s to get R2

YH. 
Then regress Y on all the X’s except Xk to get R2

YGk. The difference between the R2 values is the 
squared semipartial correlation. Or alternatively, the standardized coefficients and the Tolerances 
can be used to compute the squared semipartials. Note that, the more “tolerant” a variable is (i.e. 
the less highly correlated it is with the other IVs), the greater its unique contribution to R2 will 
be. 

Optional. The partial correlation measures the strength of the association between Xi and Y 
when all other X’s are controlled for. Formulas are below but I mostly want to focus on 
semipartial correlations. 

 ,

 

k

k

2 2
2 k k
k 22 2

YH kYG

k k
k 2 22

YH kYG

sr sr =  = pr
1  1   + srR R

sr sr =  = pr
1 - 1 -  + R srR

− −
 

 

Optional. Some alternative formulas that may occasionally come in handy are 

)1(

1
1*

2

2

−−+
=

−−
−

=

KNT
Tpr

KN
RT

sr

k

k
k

YHk
k

 

 
With these formulas you only need to estimate the model that has all the variables in it. Note that 
the only part of the calculations that will change across X variables is the T value; therefore the 
X variable with the largest partial and semipartial correlations will also have the largest T value 
(in magnitude). 
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Note that 

• Once one variable is added or removed from an equation, all the other semipartial 
correlations can change. The semipartial correlations only tell you about changes to R2 for 
one variable at a time. 

• Semipartial correlations are used in Stepwise Regression Procedures, where the computer 
(rather than the analyst) decides which variables should go into the final equation. In a 
forward stepwise regression, the variable which would add the largest increment to R2 (i.e. 
the variable which would have the largest semipartial correlation) is added next (provided it 
is statistically significant). In a backwards stepwise regression, the variable which would 
produce the smallest decrease in R2 (i.e. the variable with the smallest semipartial 
correlation) is dropped next (provided it is not statistically significant.) 

• The squared semipartials provide another possible formula for R2 
 
Let H = the set of all the X (independent) variables. 
Let Gk = the set of all the X variables except Xk. 
 

R R sr

R R sr

YH YG k

YG YH k

k

k

2 2 2

2 2 2

= +

= −
 

The squared semipartial for Xk tells you how 
much R2 will go up if Xk is added to the model 
or how much R2 will decline if Xk is dropped 
from the model. 

 

 
Appendix C: Incremental F Tests about a subset of coefficients. [Optional] 
 
[NOTE: We will talk about incremental F tests in great detail toward the middle of the course. 
For now, I will just briefly review what they are.] We sometimes wish to test hypotheses 
concerning a subset of the variables in a model. For example, suppose a model includes 3 
demographic variables (X1, X2, and X3) and 2 personality measures (X4 and X5). We may want 
to determine whether the personality measures actually add anything to the model, i.e. we want 
to test 

H0: β4 = β5 = 0 
HA: β4 and/or β5 ≠ 0 
One way to proceed is as follows. 
1. Estimate the model with all 5 IVs included. This is known as the unconstrained model. 

Retrieve the values for SSE and/or R2 (hereafter referred to as SSEu and R2
u.) [NOTE: If 

using the R2 values, copy them to several decimal places so your calculations will be 
accurate.] 

2. Estimate the model using only the 3 demographic variables. We refer to this as the 
constrained model, because the coefficients for the excluded variables are, in effect, 
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constrained to be 0. Retrieve the values for SSE and/or R2 (hereafter referred to as SSEc and 
R2

c). 
3. Compute the following: 

 
2 2

, 1 2

( )*( 1) ( ) / ( )*( 1)
(1 )* / ( 1) *

u c c u c u
J N K

u u u

R R N K SSE SSE J SSE SSE N KF
R J SSE N K SSE J− −

− − − − − − −
= = =

− − −
 

where J = the number of constraints imposed (in this case, 2) and K = the number of variables in 
the unconstrained model (in this case, 5). Put another way, J = the error d.f. for the constrained 
model minus the error d.f. for the unconstrained model. 
If J = 1, this procedure will lead you to the same conclusions a two-tailed T test would (the above 
F will equal the T2 from the unconstrained model. )  
If J = K, i.e. all the IVs are excluded in the constrained model, the incremental F and the Global 
F become one and the same; that is, the global F is a special case of the incremental F, where in 
the constrained model all variables are constrained to have zero effect. You can see this by 
noting that, if there are no variables in the model, R2 = 0. 

When you can use incremental F. In order to use the incremental F test, it must be the case 
that 

• The sample is the same for each model estimated. This assumption might be violated if, say, 
missing data in variables used in the unconstrained model caused the unconstrained sample 
to be smaller than the constrained sample. You should be careful how missing data is getting 
handled in your statistical routines 

• One model must be “nested” within the other; that is, one model must be a constrained, or 
special case, of the other. For example, if one model contains IVs X1-X5, and another model 
contains X1-X3, the latter is a special case of the former, where the constraints imposed are 
β4 = β5 = 0. If, however, the second model included X1-X3 and X6, it would not be nested 
within the first model and an incremental F test would not be appropriate. 

• Other types of constraints can also be tested with an incremental F test. For example, we 
might want to test the hypothesis that β1 = β2, i.e. two variables have equal effects. We’ll 
discuss such possibilities later. 

Other comments 

• Constrained and unconstrained are relative terms. An unconstrained model in one analysis 
can be the constrained model in another. In reality, every model is “constrained’ in the sense 
that more variables could always be added to it. 

• Wald tests, which are easily done in Stata and which we will discuss this semester, are an 
alternative to incremental F tests. 

• We are also often interested in doing such tests when estimating sequences of nested models. 
So, for example, Model 1 may include X1, X2 and X3; Model 2 may add X4 and X5; Model 
3 adds X6 and X7; and so on. With each model we may want to test whether the variables 
added in that model have effects that significantly differ from 0. 
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