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These notes draw heavily from Berry and Feldman, and, to a lesser extent, Allison, and Pindyck and Rubinfeld.] 

What heteroskedasticity is. Recall that OLS makes the assumption that  

V j( )ε σ= 2 for all j.  That is, the variance of the error term is constant. (Homoskedasticity). If the 
error terms do not have constant variance, they are said to be heteroskedastic. [Tidbit from 
Wikipedia: The term means “differing variance” and comes from the Greek “hetero” ('different') 
and “skedasis” ('dispersion').] 

When heteroskedasticity might occur. 
• Errors may increase as the value of an IV increases. For example, consider a model in which 

annual family income is the IV and annual family expenditures on vacations is the DV. 
Families with low incomes will spend relatively little on vacations, and the variations in 
expenditures across such families will be small. But for families with large incomes, the 
amount of discretionary income will be higher. The mean amount spent on vacations will be 
higher, and there will also be greater variability among such families, resulting in 
heteroskedasticity.  
 
Note that, in this example, a high family income is a necessary but not sufficient condition 
for large vacation expenditures. Any time a high value for an IV is a necessary but not 
sufficient condition for an observation to have a high value on a DV, heteroskedasticity is 
likely. 
 
Similar examples: Error terms associated with very large firms might have larger variances 
than error terms associated with smaller firms. Sales of larger firms might be more volatile 
than sales of smaller firms. 

 
• Errors may also increase as the values of an IV become more extreme in either direction, e.g. 

with attitudes that range from extremely negative to extremely positive. This will produce 
something that looks like an hourglass shape: 

http://www3.nd.edu/%7Erwilliam/
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• Measurement error can cause heteroskedasticity. Some respondents might provide more 

accurate responses than others. (Note that this problem arises from the violation of another 
assumption, that variables are measured without error.) 

• Heteroskedasticity can also occur if there are subpopulation differences or other interaction 
effects (e.g. the effect of income on expenditures differs for whites and blacks). (Again, the 
problem arises from violation of the assumption that no such differences exist or have 
already been incorporated into the model.) For example, in the following diagram suppose 
that Z stands for three different populations. At low values of X, the regression lines for each 
population are very close to each other. As X gets bigger, the regression lines get further and 
further apart. This means that the residual values will also get further and further apart. 

 
 

• Other model misspecifications can produce heteroskedasticity. For example, it may be that 
instead of using Y, you should be using the log of Y. Instead of using X, maybe you should 
be using X2, or both X and X2. Important variables may be omitted from the model. If the 
model were correctly specified, you might find that the patterns of heteroskedasticity 
disappeared. 

 
Consequences of heteroskedasticity. Note that heteroskedasticity is often a by-product of 
other violations of assumptions. These violations have their own consequences which we will 
deal with elsewhere. For now, we’ll assume that other assumptions except heteroskedasticity 
have been met. Then,  

• Heteroskedasticity does not result in biased parameter estimates. 
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• However, OLS estimates are no longer BLUE. That is, among all the unbiased estimators, 
OLS does not provide the estimate with the smallest variance. Depending on the nature of the 
heteroskedasticity, significance tests can be too high or too low. As Allison puts it: “The 
reason OLS is not optimal when heteroskedasticity is present is that it gives equal weight to 
all observations when, in fact, observations with larger disturbance variance contain less 
information than observations with smaller disturbance variance.” 

• In addition, the standard errors are biased when heteroskedasticity is present. This in turn 
leads to bias in test statistics and confidence intervals.  

• Fortunately, unless heteroskedasticity is “marked,” significance tests are virtually unaffected, 
and thus OLS estimation can be used without concern of serious distortion. But, severe 
heteroskedasticity can sometimes be a problem. 

Warning: Heteroskedasticity can be very problematic with methods besides OLS. For example, 
in logistic regression heteroskedasticity can produce biased and misleading parameter estimates. 
I talk about such concerns in my categorical data analysis class. 

 
Detecting Heteroskedasticity 
Visual Inspection. Do a visual inspection of residuals plotted against fitted values; or, plot the 
IV suspected to be correlated with the variance of the error term. In Stata, after running a 
regression, you could use the rvfplot (residuals versus fitted values) or rvpplot command 
(residual versus predictor plot, e.g. plot the residuals versus one of the X variables included in 
the equation). In SPSS, plots could be specified as part of the Regression command. 
 In a large sample, you’ll ideally see an “envelope” of even width when residuals are 

plotted against the IV. In a small sample, residuals will be somewhat larger near the mean 
of the distribution than at the extremes. Thus, if it appears that residuals are roughly the 
same size for all values of X (or, with a small sample, slightly larger near the mean of X) 
it is generally safe to assume that heteroskedasticity is not severe enough to warrant 
concern. 

 
 If the plot of residuals shows some uneven envelope of residuals, so that the width of the 

envelope is considerably larger for some values of X than for others, a more formal test 
for heteroskedasticity should be conducted. 

 
Breusch-Pagan / Cook-Weisberg Test for Heteroskedasticity. The Breusch-Pagan test is 
designed to detect any linear form of heteroskedasticity. You run a regression, and then give the 
estat hettest command (or, hettest alone will work). Using the reg01 data,  
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. use https://www3.nd.edu/~rwilliam/statafiles/reg01.dta, clear 
. reg  income educ jobexp 
 
      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  2,    17) =   46.33 
       Model |  1538.22521     2  769.112605           Prob > F      =  0.0000 
    Residual |  282.200265    17  16.6000156           R-squared     =  0.8450 
-------------+------------------------------           Adj R-squared =  0.8267 
       Total |  1820.42548    19  95.8118671           Root MSE      =  4.0743 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.933393   .2099494     9.21   0.000     1.490438    2.376347 
      jobexp |   .6493654   .1721589     3.77   0.002     .2861417    1.012589 
       _cons |  -7.096855   3.626412    -1.96   0.067    -14.74791    .5542051 
------------------------------------------------------------------------------ 
 
. estat hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of income 
 
         chi2(1)      =     0.12 
         Prob > chi2  =   0.7238 

 
Breusch-Pagan / Cook-Weisberg tests the null hypothesis that the error variances are all equal 
versus the alternative that the error variances are a multiplicative function of one or more 
variables. For example, in the default form of the hettest command shown above, the 
alternative hypothesis states that the error variances increase (or decrease) as the predicted 
values of Y increase, e.g. the bigger the predicted value of Y, the bigger the error variance is. A 
large chi-square would indicate that heteroskedasticity was present. In this example, the chi-
square value was small, indicating heteroskedasticity was probably not a problem (or at least that 
if it was a problem, it wasn’t a multiplicative function of the predicted values).  

Besides being relatively simple, hettest offers several additional ways of testing for 
heteroskedasticity; e.g. you could test for heteroskedasticity involving one variable in the model, 
several or all the variables, or even variables that are not in the current model. Type help 
hettest or see the Stata reference manual for details. 

See Appendix A for details on how and why hettest works. 

 
White’s General Test for Heteroskedasticity. The default Breusch-Pagan test specified by 
hettest is a test for linear forms of heteroskedasticity, e.g. as ŷ  goes up, the error variances 
go up. In this default form, the test does not work well for non-linear forms of heteroskedasticity, 
such as the hourglass shape we saw before (where error variances got larger as X got more 
extreme in either direction). The default test also has problems when the errors are not normally 
distributed.  
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White’s general test for heteroskedasticity (which is actually a special case of Breusch-Pagan) 
can be used for such cases. This can be estimated via the command estat imtest, white 
or just imtest, white. (Actually, the white option seems to matter rarely if ever in my 
experience; the Stata help says “White's test is usually very similar to the first term of the 
Cameron-Trivedi decomposition” normally reported by imtest.) You can also use Mark 
Schaffer’s ivhettest (which offers several additional capabilities) or Baum & Cox’s 
whitetst, both available from SSC. As the help for whitetst states, 
 

whitetst computes the White (1980) general test for heteroskedasticity in the error distribution 
by regressing the squared residuals on all distinct regressors, cross-products, and squares of 
regressors. The test statistic, a Lagrange multiplier measure, is distributed Chi-squared(p) under 
the null hypothesis of homoskedasticity. See Greene (2000), pp. 507-511.  

 

NOTE: Part of the reason the test is more general is because it adds a lot of terms to test for more 
types of heteroskedasticity. For example, adding the squares of regressors helps to detect 
nonlinearities such as the hourglass shape. In a large data set with many explanatory variables, 
this may make the test difficult to calculate. Also, the addition of all these terms may make the 
test less powerful in those situations when a simpler test like the default Breusch-Pagan would be 
appropriate, i.e. adding a bunch of extraneous terms may make the test less likely to produce a 
significant result than a less general test would. 
 
Here is an example using estat imtest, white: 
 
. use http://www.nd.edu/~rwilliam/statafiles/reg01.dta, clear 
. quietly reg income educ jobexp 
. estat imtest, white 
 
White's test for Ho: homoskedasticity 
         against Ha: unrestricted heteroskedasticity 
 
         chi2(5)      =      8.98 
         Prob > chi2  =    0.1100 
 
Cameron & Trivedi's decomposition of IM-test 
 
--------------------------------------------------- 
              Source |       chi2     df      p 
---------------------+----------------------------- 
  Heteroskedasticity |       8.98      5    0.1100 
            Skewness |       2.39      2    0.3022 
            Kurtosis |       0.98      1    0.3226 
---------------------+----------------------------- 
               Total |      12.35      8    0.1363 
--------------------------------------------------- 
 

As noted before, White’s general test is a special case of the Breusch-Pagan test, where the 
assumption of normally distributed errors has been relaxed (to do this, use the iid option of 
hettest) and an auxiliary variable list (i.e. the Xs, the Xs squared and the cross-
product/interaction terms) is specified: 
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. quietly reg  income educ jobexp 

. estat hettest educ jobexp c.educ#c.educ c.jobexp#c.jobexp c.educ#c.jobexp, iid 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: educ jobexp c.educ#c.educ c.jobexp#c.jobexp c.educ#c.jobexp 
 
         chi2(5)      =     8.98 
         Prob > chi2  =   0.1100 

 

See Appendix A for details on how and why imtest works. 

 

Other Tests. There are lots of other tests for heteroskedasticity. They make different 
assumptions about the form of heteroskedasticity, whether or not error terms are normally 
distributed, etc. The readings go over some of these and if you give the command 
findit heteroskedasticity from within Stata you’ll come up with more options.  

Appendix B discusses the Goldfeldt-Quant test, which is somewhat antiquated, but which you 
may occasionally come across in your reading. 

 
Dealing with heteroskedasticity 
 
1. Respecify the Model/Transform the Variables. As noted before, sometimes 
heteroskedasticity results from improper model specification. There may be subgroup 
differences. Effects of variables may not be linear. Perhaps some important variables have been 
left out of the model. If these are problems deal with them first!!! Don’t just launch into other 
techniques, such as WLS, because they don’t get to the heart of the problem. 
 
Incidentally, Allison says (p. 128) “My own experience with heteroskedasticity is that is has to 
be pretty severe before it leads to serious bias in the standard errors. Although it is certainly 
worth checking, I wouldn’t get overly anxious about it.”  
 

Warning: In general, I agree, with the qualifier that heteroskedasticity that results from model 
mis-specification is something to be concerned about. Indeed, I would say in such cases the 
problem isn’t really heteroskedasticity, it is model mis-specification; fix that problem and the 
heteroskedasticity may go away. HOWEVER, by checking for heteroskedasticity, you may be 
able to identify model specification problems. So, I would probably be a little more anxious 
about heteroskedasticity than Allison implies. 

 
2. Use Robust Standard Errors. Stata includes options with most routines for estimating 
robust standard errors (you’ll also hear these referred to as Huber/White estimators or sandwich 
estimators of variance). As noted above, heteroskedasticity causes standard errors to be biased. 
OLS assumes that errors are both independent and identically distributed; robust standard errors 
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relax either or both of those assumptions. Hence, when heteroskedasticity is present, robust 
standard errors tend to be more trustworthy. 

With regards to the related problem of error terms not being independent: Survey data are often collected using 
clustering, e.g. a sample will be drawn of areas and individuals within those areas will then be selected for inclusion 
in the sample. Also, some groups will be deliberately oversampled, e.g. your sampling scheme might be set up to 
include a disproportionately large number of minorities, in order to ensure that you have enough minorities to do 
subsample analyses of them. Such strategies can lead to violations of the assumption that the error terms are 
independent of each other (since people sampled in clusters tend to be more similar than people sampled totally at 
random). There is a good discussion of this in “Sampling Weights and Regression Analysis” by Winship and 
Radbill, Sociological Methods and Research, V. 23, # 2, Nov 1994 pp. 230-257. 

Another example (given by Hamilton in Statistics with Stata, Updated for Stata 9, pp. 258-259: 51 college students 
were asked to rate the attractiveness of photographs of unknown men and women. The procedure was reported 4 
times, producing 204 sets of records. Hamilton says “It seems reasonable to assume that disturbances (unmeasured 
influences on the ratings) were correlated across the repetitions by each individual. Viewing each participant’s four 
rating sessions as a cluster should yield more realistic standard errors.” In this case you add the cluster(id) 
option to the regression command, where id is the id number of the subject. 

As Allison points out, the use of robust standard errors does not change coefficient estimates, but 
(because the standard errors are changed) the test statistics will give you reasonably accurate p 
values. The use of Weighted Least Squares (described next) will also correct the problem of bias 
in the standard errors, and will also give you more efficient estimates (i.e. WLS will give you 
estimates that have the smallest possible standard errors). But, WLS requires more assumptions 
and is more difficult to implement, so robust standard errors seem to be a more common and 
popular method for dealing with issues of heteroskedasticity. 
With Stata, robust standard errors can usually be computed via the addition of two parameters, 
robust and cluster. The robust option relaxes the assumption that the errors are 
identically distributed, while cluster relaxes the assumption that the error terms are 
independent of each other. For example, rerunning the above regression with the robust 
option, we get 
. reg  income educ jobexp, robust 
 
Regression with robust standard errors                 Number of obs =      20 
                                                       F(  2,    17) =   48.15 
                                                       Prob > F      =  0.0000 
                                                       R-squared     =  0.8450 
                                                       Root MSE      =  4.0743 
 
------------------------------------------------------------------------------ 
             |               Robust 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.933393   .2006214     9.64   0.000     1.510119    2.356667 
      jobexp |   .6493654   .1701214     3.82   0.001     .2904407     1.00829 
       _cons |  -7.096855   3.365609    -2.11   0.050    -14.19767    .0039603 
------------------------------------------------------------------------------ 
 

Note: You can also give the command 
. reg income educ jobexp, vce(robust) 

which is actually the preferred syntax for newer versions of Stata. 
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Comparing the results with the earlier regression, you note that none of the coefficient estimates 
changed, but the standard errors and hence the t values are a little different. Had there been more 
heteroskedasticity in these data, we would have probably seen bigger changes. 
In some cases, Stata will use robust standard errors whether you explicitly ask for them or not. 
For example, if you have used clustering when collecting your data (and you tell Stata this via 
use of the cluster parameter) the error terms will not be independent. Hence, if you ever 
wonder why you are getting robust standard errors when you did not ask for them, it is probably 
because robust standard errors are more appropriate for what you are doing. (Indeed, with more 
complicated analyses, Stata will often surprise you by doing things you don’t expect; if you can 
figure out why, you will learn a lot about advanced statistics!) 

Caution: Do not confuse robust standard errors with robust regression. Despite their similar 
names, they deal with different problems: 
Robust standard errors address the problem of errors that are not independent and identically 
distributed. The use of robust standard errors will not change the coefficient estimates provided 
by OLS, but they will change the standard errors and significance tests. 
Robust regression, on the other hand, deals with the problem of outliers in a regression. Robust 
regression uses a weighting scheme that causes outliers to have less impact on the estimates of 
regression coefficients. Hence, robust regression generally will produce different coefficient 
estimates than OLS does. 

 
3. Use Weighted Least Squares. A more difficult option (but superior when you can 
make it work right) is the use of weighted least squares. 

Weighted Least Squares is a more advanced method that I don’t see sociologists using that often. 
It is therefore covered in the optional but recommended Appendix C. 

 
 
4. Summary of recommendations for dealing with heteroskedasticity. In most instances, I 
would recommend option 1 (respecify the model or transform the variables) or option 2 (robust 
standard errors). Most of the examples I have seen using Stata take those approaches. However, 
in special cases, option 3 (WLS) can be the best. What makes WLS hard, though, is knowing 
what weights to use. The weights either have to be known for some reason or you have to have 
some sort of plausible theory about what the weights should be like, e.g. error terms go up as X 
goes up. 
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Appendix A: Heteroskedasticity Tests Explained [Optional] 
This appendix elaborates on how and why some of the heteroskedasticity tests work. 

hettest. Here (roughly) is how hettest works.  

• First, you run a regression.  

• Then, hettest uses the predict command to compute the predicted values ( ŷ ) and 
the residuals (e).  

• The residuals are then squared and also rescaled so that their mean is 1. (This is 
accomplished by dividing each residual by SS Residual/ N, i.e. each squared residual is 
divided by the average of the squared residuals). The rescaling is necessary for 
computing the eventual test statistic.  

• The squared residuals are then regressed on ŷ and the test statistic is computed. The test 
statistic is the model (i.e. explained) sums of squares from this regression divided by two 
(take this part on faith!). If the null is true, i.e. there is no multiplicative 
heteroskedasticity, the test statistic has a chi-square distribution with 1 degree of 
freedom. 

• If there is no heteroskedasticity, then the squared residuals should neither increase nor 
decrease in magnitude as ŷ  increases, and the test statistic should be insignificant.  

• Conversely, if the error variances are a multiplicative function of one or more variables 
(e.g. as X increases, the residuals fall farther and farther from the regression line) then the 
test statistic will be significant. 

Here is how you could interactively do the same thing that hettest is doing. 
. use https://www3.nd.edu/~rwilliam/statafiles/reg01.dta, clear 
. quietly reg  income educ jobexp 
 
. * compute yhat 
. predict yhat if e(sample) 
(option xb assumed; fitted values) 
 
. * Compute the residual 
. predict e if e(sample), resid 
 
. * Square the residual, and rescale it so that the squared values 
. * have a mean of 1. This is needed for the eventual test statistic. 
. gen esquare = e^2 / (e(rss)/e(N)) 
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. * Regress squared residuals on yhat 

. reg esquare yhat 
 
      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  1,    18) =    0.18 
       Model |  .249695098     1  .249695098           Prob > F      =  0.6758 
    Residual |  24.8679862    18  1.38155479           R-squared     =  0.0099 
-------------+------------------------------           Adj R-squared = -0.0451 
       Total |  25.1176813    19  1.32198323           Root MSE      =  1.1754 
 
------------------------------------------------------------------------------ 
     esquare |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        yhat |   .0127408   .0299691     0.43   0.676     -.050222    .0757036 
       _cons |   .6889345   .7774684     0.89   0.387     -.944466    2.322335 
------------------------------------------------------------------------------ 
 
. * Compute test statistic.  
. display "Chi Square (1) = " e(mss) / 2 
Chi Square (1) = .12484755 
 
. * Display the p value for the chi-square statistic 
. display "Prob > chi2 = " chi2tail(1, e(mss)/ 2) 
Prob > chi2 = .72383527 

 
Comparing this with our earlier results, 
. quietly reg  income educ jobexp 
. estat hettest 
 
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity  
         Ho: Constant variance 
         Variables: fitted values of income 
 
         chi2(1)      =     0.12 
         Prob > chi2  =   0.7238 

 

 
imtest: Here (roughly) is how imtest works.  

• First, you run a regression.  

• Then, imtest uses the predict command to compute the residuals (e).  

• The residuals are then squared. (You don’t need to rescale like you did before.) 

• imtest creates new variables that are equal to the X-squared terms and the cross-
products of the Xs with each other. So, for example, if X1 is the only variable, imtest 
computes X12. If you had X1 and X2, imtest would compute X12, X22, and X1*X2. If 
you had three Xs, imtest would compute X12, X22, X32, X1*X2, X1*X3, and X2*X3.  

• The squared residuals are then regressed on the original Xs, the squared Xs, and the 
cross-product terms. The test statistic = N * R2. If the null is true, i.e. there is no 
heteroskedasticity, the test statistic has a chi-square distribution with K*(K+3)/2 degrees 
of freedom. [NOTE: with 0/1 dichotomies, the squared terms are the same as the non-
squared terms, which will cause some terms to drop out, reducing the d.f.] 
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• If there is no heteroskedasticity, then the test statistic should be insignificant.  

• Conversely, if there is heteroskedasticity, then the test statistic will be significant. 

• imtest also produces some additional tests for skewness and kurtosis that I won’t 
discuss here. 

Here is how you could interactively do the same thing that imtest is doing. 
. use https://www3.nd.edu/~rwilliam/statafiles/reg01.dta, clear 
. quietly reg  income educ jobexp 
 
. * Compute the residual 
. predict e if e(sample), resid 
 
. * Square the residual 
. gen esquare = e^2  
 
. * Compute squares and cross-products.  
. gen educ2 = educ ^2 
. gen jobexp2 = jobexp ^2 
. gen jobed =  jobexp * educ 
 
. * Regress the squared residuals on all the X terms 
. reg  esquare educ jobexp educ2 jobexp2 jobed 
 
      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  5,    14) =    2.28 
       Model |  2244.74846     5  448.949692           Prob > F      =  0.1030 
    Residual |  2755.99297    14   196.85664           R-squared     =  0.4489 
-------------+------------------------------           Adj R-squared =  0.2521 
       Total |  5000.74143    19  263.196917           Root MSE      =  14.031 
 
------------------------------------------------------------------------------ 
     esquare |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |  -.1087202   3.136867    -0.03   0.973    -6.836632    6.619191 
      jobexp |  -5.840211   5.156813    -1.13   0.276    -16.90047    5.220053 
       educ2 |  -.1527344   .1301013    -1.17   0.260     -.431774    .1263052 
     jobexp2 |   .2007152   .1368099     1.47   0.164     -.092713    .4941433 
       jobed |   .2265167   .2005732     1.13   0.278      -.20367    .6567033 
       _cons |   42.61451   44.62289     0.95   0.356    -53.09207    138.3211 
------------------------------------------------------------------------------ 
 
. * Test stat = N * R-squared 
. display 20* e(r2) 
8.9776626 
 

Comparing this with our earlier results, 
. quietly reg income educ jobexp 
. estat imtest, white 
 
White's test for Ho: homoskedasticity 
         against Ha: unrestricted heteroskedasticity 
 
         chi2(5)      =      8.98 
         Prob > chi2  =    0.1100 
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Appendix B: Goldfeldt-Quant (GQ) test [Optional] 
[NOTE: This section is primarily included in case you come across this test in your readings. 
The tests we discuss above are now considered superior. Skim through this on your own.] The 
GQ test can be used when it is believed that the variance of the error term increases consistently 
or decreases consistently as X increases. The procedure is as follows: 
 Order the data by the magnitude of the IV X which is thought to be related to the error 

variance. 
 Omit the middle d observations. Typically, d might equal 20% of the sample size. This 

technically isn’t necessary, but experience shows that this tends to improve the power of 
the test (i.e. makes it more likely you will reject the null hypothesis when it is false). 

 Fit two separate regressions—one for the low values of X and one for the high. Each will 
involve (N - d)/2 cases, and [(N - d)/2 - 2] degrees of freedom. 

 Calculate the residual sum of squares for each equation: SSElow for the low X’s, and 
SSEhigh for the high X’s. 

 If you think the error variance is an increasing function of X, compute the following 
statistic: 

F
SSE
SSEN d N d

high

low
( ) / ,( ) /− − − − =4 2 4 2  

If you think the error variance is a decreasing function of X, then reverse the numerator and 
denominator. This statistic assumes that the error process is normally distributed and there is no 
serial correlation. The F statistic should approximately equal 1 if the errors are homoskedastic. If 
the F value is greater than the critical value, we reject the null hypothesis of homoskedasticity. 
 Note that this is a test of  

H0:: σI
2 = σ2

2= σ32... = σN
2 

HA: σI
2 = CXi

2 (Where C is some constant) 
 You can easily modify the procedure when you have more than one IV in the model. 

Again, you order by one of the X variables (the one you think may be causing the 
problem). The other steps are the same, except that the F statistic is 

F
SSE
SSEN d K N d K

high

low
( ) / ,( ) /− − − − − − =2 2 2 2 2 2  

(Note that in the bivariate regression case, K = 1, hence the first F test is just a special case of 
this one). 
 To do this in Stata, you would do something like the following: Using the income, 

education, jobexp example I’ve used before, I dropped the middle 8 cases and produced 
the following.: 
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. use http://www.nd.edu/~rwilliam/statafiles/reg01.dta, clear 

. fre educ 
 
educ 
----------------------------------------------------------- 
              |      Freq.    Percent      Valid       Cum. 
--------------+-------------------------------------------- 
Valid   2     |          1       5.00       5.00       5.00 
        4     |          1       5.00       5.00      10.00 
        8     |          3      15.00      15.00      25.00 
        10    |          1       5.00       5.00      30.00 
        12    |          5      25.00      25.00      55.00 
        13    |          1       5.00       5.00      60.00 
        14    |          2      10.00      10.00      70.00 
        15    |          2      10.00      10.00      80.00 
        16    |          2      10.00      10.00      90.00 
        17    |          1       5.00       5.00      95.00 
        21    |          1       5.00       5.00     100.00 
        Total |         20     100.00     100.00            
----------------------------------------------------------- 
 
. reg income educ jobexp if educ <=10 
 
      Source |       SS       df       MS              Number of obs =       6 
-------------+------------------------------           F(  2,     3) =    5.16 
       Model |  388.596126     2  194.298063           Prob > F      =  0.1069 
    Residual |  113.012206     3  37.6707353           R-squared     =  0.7747 
-------------+------------------------------           Adj R-squared =  0.6245 
       Total |  501.608332     5  100.321666           Root MSE      =  6.1376 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.975563   .9958481     1.98   0.142     -1.19367    5.144796 
      jobexp |   1.057993   .6990496     1.51   0.227    -1.166695    3.282681 
       _cons |  -12.45698   10.21039    -1.22   0.310      -44.951    20.03704 
------------------------------------------------------------------------------ 
 
. reg income educ jobexp if educ >=15 
 
      Source |       SS       df       MS              Number of obs =       6 
-------------+------------------------------           F(  2,     3) =   13.55 
       Model |  411.231321     2   205.61566           Prob > F      =  0.0315 
    Residual |  45.5369983     3  15.1789994           R-squared     =  0.9003 
-------------+------------------------------           Adj R-squared =  0.8338 
       Total |  456.768319     5  91.3536638           Root MSE      =   3.896 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   2.910157    .808277     3.60   0.037     .3378588    5.482455 
      jobexp |   .6475437   .2526255     2.56   0.083    -.1564234    1.451511 
       _cons |  -23.24063   13.03198    -1.78   0.173     -64.7142    18.23295 
------------------------------------------------------------------------------ 

 
In this example, N = 20, d = 8, K = 2, SSEhigh = 45.54, SSELow = 113.01. If there is 
heteroskedasticity, it is greater at lower values of education, ergo  
 

( 2 2)/2,( 2 2)/2 (20 8 2*2 2)/2,(20 8 2*2 2)/2 3,3
113.01 2.48
45.54

high
N d K N d K

low

SSE
GQ F F F

SSE− − − − − − − − − − − −= = = = = =  
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This is not significant at the .05 level. 
 GQ is not helpful if you think there is heteroskedasticity, but it isn’t monotonic, i.e. you 

think extreme values of X at either end produce larger error variances (like the hourglass 
shape we saw before). 

 GQ has been found to be reasonably powerful when we are able to correctly identify the 
variable to use in the sample separation. This does limit its generality, however; 
sometimes heteroskedasticity might be a function of several variables. The other tests we 
discuss are more flexible and also simpler.  
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Appendix C: Weighted Least Squares [Optional] 
 
A more difficult option for dealing with heteroskedasticity (but superior when you can make it 
work right) is the use of weighted least squares. Generalized Least Squares [GLS] is a technique 
that will always yield estimators that are BLUE when either heteroskedasticity or serial 
correlation are present. OLS selects coefficients that minimize the sum of squared regression 
residuals, i.e. 
 
Σ(  )Y Yj j− 2  
 
GLS minimizes a weighted sum of squared residuals. In the case of heteroskedasticity, 
observations expected to have error terms with large variances are given a smaller weight than 
observations thought to have error terms with small variances. Specifically, coefficients are 
selected which minimize 
 

(  )
( )

Y Y
VAR

j j

jj

N −

=
∑

2

1 ε
 

 
OLS is a special case of GLS, when the variance of all residuals is the same for all cases. The 
smaller the error variance, the more heavily the case is weighted. Intuitively, this makes sense: 
the observations with the smallest error variances should give the best information about the 
position of the true regression line. 
 
GLS estimation can be a bit complicated. However, under certain conditions, estimators 
equivalent to those generated by GLS can be obtained using a Weighted Least Squares (WLS) 
procedure utilizing OLS regression on a transformed version of the original regression model. 
 
WLS CASE I. In WLS Case I the error variances are somehow miraculously known. Since that 
rarely if ever happens I won’t bother discussing it. 

 
WLS CASE II. A far more common case is when we think the error variances vary directly with 
an IV. For example, suppose we think there is heteroskedasticity in which the standard deviation 
of the error term is linearly related to X1, i.e. 
 
σ i iCX= 1  

In other words, the larger X is, the more error variability there will be. 

 
Using Stata for WLS Case II. The aweights parameter (analytical weights) in Stata 
provides one means for doing WLS. Take the X which you think is causing the 
heteroskedasticity, and proceed as follows: 
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. gen inveduc = (1/educ)^2 
 
. reg income  educ jobexp [aw = inveduc] 
(sum of wgt is   4.4265e-01) 
 
      Source |       SS       df       MS              Number of obs =      20 
-------------+------------------------------           F(  2,    17) =   86.20 
       Model |  1532.21449     2  766.107244           Prob > F      =  0.0000 
    Residual |  151.090319    17  8.88766581           R-squared     =  0.9102 
-------------+------------------------------           Adj R-squared =  0.8997 
       Total |  1683.30481    19  88.5949898           Root MSE      =  2.9812 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.795724   .1555495    11.54   0.000     1.467544    2.123905 
      jobexp |   .4587992   .1628655     2.82   0.012      .115183    .8024155 
       _cons |  -3.159669    1.94267    -1.63   0.122    -7.258345    .9390065 
------------------------------------------------------------------------------ 
 
Note that both the coefficients and the standard errors are different from before. If we were 
confident that we were using the correct weights, this would be a superior solution to 
anything we have done before. If, however, the weights are wrong, we may have just made 
things worse! I actually prefer SPSS for WLS (at least for Case II), because I think it 
provides a better test of what weighting scheme is best. 
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