Omitted variable bias. Suppose that the “correct” model is
\[y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \varepsilon \]
If we estimate
\[y = a + b_1 X_1 + b_2 X_2 + e \]
we know that \(E(b_1) = \beta_1 \) and \(E(b_2) = \beta_2 \) i.e. the regression coefficients are unbiased estimators of the population parameters.
Suppose, however, the researcher mistakenly believes
\[y = \alpha^* + \beta_1^* X_1 + \varepsilon^* \]
and therefore estimates
\[y = a^* + b_1^* X_1 + e^* \]
i.e. \(X_2 \) is mistakenly omitted from the model. How does \(b_1 \) (the regression estimate from the correctly specified model) compare to \(b_1^* \) (the regression estimate from the mis-specified model)? What is \(E(b_1^*) \)? Is it a biased or unbiased estimator of \(\beta_1 \)? If biased, how is it biased?

Note that \(b_1^* \)
\[
\frac{\hat{\text{Cov}}(X_1, Y)}{\hat{V}(X_1)} = \frac{\hat{\text{Cov}}(X_1, a + b_1 X_1 + b_2 X_2 + e)}{\hat{V}(X_1)} = \frac{\hat{\text{Cov}}(X_1, a) + b_1 \hat{\text{Cov}}(X_1, X_1) + b_2 \hat{\text{Cov}}(X_1, X_2) + \hat{\text{Cov}}(X_1, e)}{\hat{V}(X_1)} = 0 + b_1 \hat{V}(X_1) + b_2 \hat{\text{Cov}}(X_1, X_2) + 0 \frac{\hat{\text{Cov}}(X_1, X_2)}{\hat{V}(X_1)} = b_1 + b_2 \frac{\hat{\text{Cov}}(X_1, X_2)}{\hat{V}(X_1)}
\]

Formula for bivariate regression coefficient
Substitute the formula for \(Y \) from the correctly specified model
Expectations rules:
\(\text{Cov}(a+b,c+d) = \text{Cov}(a,c) + \text{Cov}(a,d) + \text{Cov}(b,c) + \text{Cov}(b,d) \)
Recall that \(\text{Cov}(\text{variable, constant}) = 0 \). Also, \(X \)'s are uncorrelated with the residuals.
Simplify expression.

If your eyes glaze over when looking at equations, just make sure you get the conclusion. If \(X_2 \) has mistakenly been omitted from the model, then, taking expectations, we get
\[
E(b_1^*) = \beta_1 + \beta_2 \frac{\sigma_{12}^2}{\sigma_1^2}
\]
Very Important: Hence, b_1^* is a biased estimator of β_1. Further, this bias will not disappear as sample size gets larger, so the omission of a variable from a model also leads to an inconsistent estimator. In effect, x_1 gets credit (or blame) for the effects of the variables that have been omitted from the model.

Note that there are two conditions under which b_1^* will not be biased:

- $\beta_2 = 0$. Of course, if $\beta_2 = 0$, this means that the model is not mis-specified, i.e. X_2 does not belong in the model because it has no effect on Y.
- $\sigma_{12} = 0$. That is, if the 2 X’s are uncorrelated, then omitting one does not result in biased estimates of the effect of the other.

Example 1. I will construct a data set where $b_1 = 3$, $b_2 = 2$, and x_1 and x_2 have a correlation of .5. The standard deviation of x_1 is 4 and the standard deviation of x_2 is 4. We will see what happens if x_2 is omitted from the model.

```
. clear all
. matrix input corr = (1,.5,0,.5,1,0,0,1)
. matrix input sds = (4,4,10)
. corr2data x1 x2 e, corr(corr) sd(sds) n(500)
(obs 500)
. gen y = 3*x1 + 2*x2 + e
. corr y x1 x2
(obs=500)
|        y       x1       x2
-------------+---------------------------
y |   1.0000
x1 |   0.7960   1.0000
x2 |   0.6965   0.5000   1.0000
. corr y x1 x2, cov
(obs=500)
|        y       x1       x2
-------------+---------------------------
y |      404
x1 |       64    16
x2 |       56    8    16
. * Correct regression
. reg y x1 x2
```

```
Source |       SS       df       MS              Number of obs =     500  
-------------+------------------------------           F(  2,   497) =  755.44  
Model |  151696.000     2  75847.9998           Prob > F      =  0.0000  
Residual |  49899.9993   497  100.402413           R-squared     =  0.7525  
-------------+------------------------------           Adj R-squared =  0.7515  
Total |  201595.999   499  403.999998           Root MSE      =   10.02  

------------------------------------------------------------------------------
y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
x1 |  3.1294885    23.17   0.000     2.745588    3.254412
x2 |          2   .1294885    15.45   0.000     1.745588    2.254412
    _cons | -4.41e-09   .4481125    -0.00   1.000    -.8804284    .8804284
------------------------------------------------------------------------------
```

```
Specification Error: Omitted and Extraneous Variables  Page 2
We see that, when \( x_2 \) is omitted from the model, the effect of \( x_1 \) is over-estimated in this case. (In other situations it could be under-estimated). To confirm that Stata got it right,

\[
b_1^* = b_1 + b_2 \frac{\text{Cov}(X_1, X_2)}{\hat{V}(X_i)} = 3 + 2 \frac{8}{16} = 4
\]

**Example 2.** Here is an example of a special case where omitting a variable does NOT result in omitted variable bias. I construct a data set similar to what we had before, except \( x_1 \) and \( x_2 \) are uncorrelated.

```stata
. clear all
. matrix input corr = (1, 0, 0\0, 1, 0\0, 0, 1)
. matrix input sds = (4\4\10)
. corr2data x1 x2 e, corr(corr) sd(sds) n(500)
(obs 500)
. gen y = 3*x1 + 2*x2 + e
. corr y x1 x2
(obs=500)
| y x1 x2
-------------+---------------------------
y | 1.0000
x1 | 0.6838 1.0000
x2 | 0.4558 0.0000 1.0000
-------------+---------------------------
.
. * Correct regression
. reg y x1 x2
```

```stata
Source | SS df MS Number of obs = 500
-------------+------------------------------ F(2, 497) = 516.88
Model | 103792 2 51896.0002 Prob > F = 0.0000
Residual | 49899.9994 497 100.402413 R-squared = 0.6753
-------------+------------------------------ Adj R-squared = 0.6740
Total | 153692 499 308 Root MSE = 10.02

--
 y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
 x1 | 3.112140 .8521101 3.60 0.000 1.423012 4.788268
 x2 | 2.112140 .8521101 2.49 0.013 .4683613 3.765519
_cons | -4.17e-08 .0056417 -0.07 0.943 -.0027415 .0027415
--
```
. * X2 omitted but no bias in this case
. reg y x1

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>71856.0006</td>
<td>1</td>
<td>71856.0006</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>81835.9992</td>
<td>498</td>
<td>164.329316</td>
<td>R-squared = 0.4675</td>
</tr>
<tr>
<td>Total</td>
<td>153692</td>
<td>499</td>
<td>308</td>
<td>Root MSE = 12.819</td>
</tr>
</tbody>
</table>

------------------------------------------------------------------------------
y | Coef.     Std. Err.  t    P>|t|    [95% Conf. Interval]
------------------------------------------------------------------------------
x1 | 3.1434654  20.91 0.000   2.718128  3.281872
_cons | 3.71e-08 .5732876 0.00 1.000 -1.12636  1.12636
------------------------------------------------------------------------------

Inclusion of extraneous variables. Suppose that the “correct” model is

\[ y = \alpha + \beta X_1 + \varepsilon \]

If we estimate

\[ y = \alpha + b_1 X_1 + e \]

we know that E(b1) = \beta_1, i.e. the regression coefficients is an unbiased estimators of the population parameter.

Suppose, however, the researcher mistakenly believes

\[ y = \alpha^* + \beta_1^* X_1 + \beta_2^* X_2 + \varepsilon^* \]

and therefore estimates

\[ y = a^* + b_1^* X_1 + b_2^* X_2 + e^* \]

i.e. X2 is mistakenly added to the model. How does b1 (the regression estimate from the correctly specified model) compare to b1* (the regression estimate from the mis-specified model)? What is E(b1*)? Is it a biased or unbiased estimator of \beta_1? If biased, how is it biased?

Here is an informal proof: We can think of the “correct” model as being a special case of the “incorrect” model, where \beta_2 = 0. It will therefore be the case that E(b1*) = \beta_1, and E(b2*) = 0. Hence, addition of extraneous variables does not lead to biased coefficients.

However, adding extraneous (or “junk”) variables to the model will result in inflated standard errors and all the problems they create. Recall that, in the two IV case,

\[ s_{b_1} = \sqrt{\frac{1 - R_{12}^2}{(1 - R_{12}^2)(N - K - 1)}} \times s_y / s_{X_1} \]

As the formula suggests, adding irrelevant variables will tend not to increase the numerator, because irrelevant variables will not substantially increase \( R^2 \). However, irrelevant variables will
tend to increase the denominator. The tolerance will be smaller \((1 - R^2_{12})\) and \(N-K-1\) will be smaller.

**Example 3.** This is similar to the first example, except that \(x2\) has no effect on \(y\).

```
. * Extraneous variables
. clear all
. matrix input corr = (1,.5,0\.5,1,0\0,0,1)
. matrix input sds = (4\4\10)
. corr2data x1 x2 e, corr(corr) sd(sds) n(500)
. gen y = 3*x1 + e
. corr y x1 x2
(obs=500)
| y x1 x2
-------------+---------------------------
y | 1.0000
x1 | 0.7682 1.0000
x2 | 0.3841 0.5000 1.0000
```

. * Correct regression
. reg y x1

```
Source | SS df MS Number of obs = 500
-------------+------------------------------ F(1, 498) = 717.12
Model | 71856.0006 1 71856.0006 Prob > F = 0.0000
Residual | 49899.9991 498 100.200801 R-squared = 0.5902
-------------+------------------------------ Adj R-squared = 0.5893
Total | 121756 499 243.999999 Root MSE = 10.01

--
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
x1 | 3.1120277 26.78 0.000 2.779895 3.220105
_cons | -6.22e-08 .4476624 -0.00 1.000 -.8795398 .8795397
--
```

. * Extraneous variable added
. reg y x1 x2

```
Source | SS df MS Number of obs = 500
-------------+------------------------------ F(2, 497) = 357.84
Model | 71856.0006 2 35928.0003 Prob > F = 0.0000
Residual | 49899.9991 497 100.402413 R-squared = 0.5902
-------------+------------------------------ Adj R-squared = 0.5885
Total | 121756 499 243.999999 Root MSE = 10.02

--
y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
x1 | 3.1294885 23.17 0.000 2.745588 3.254412
x2 | 7.70e-09 .1294885 0.00 1.000 -.2544123 .2544123
_cons | -6.22e-08 .4481125 -0.00 1.000 -.8804285 .8804284
--
```

As you can see the coefficient for \(x1\) did not change but the standard error increased and the \(t\) value went down.
Appendix: Another example of omitted variable bias

EXAMPLE: Consider our income/education/job experience example:

```stata
use https://www3.nd.edu/~rwilliam statafiles/reg01.dta, clear
corr educ jobexp income, cov
(obs=20)
| educ jobexp income
-------------+---------------------------
educ | 20.05
jobexp | -2.61316 29.8184
income | 37.0676 14.3108 95.8119
```

```
reg income educ jobexp
Source | SS df MS Number of obs = 20
-------------+------------------------------ F(2, 17) = 46.33
Model | 1538.22521 2 769.112605 Prob > F = 0.0000
Residual | 282.200265 17 16.6000156 R-squared = 0.8450
-------------+------------------------------ Adj R-squared = 0.8267
Total | 1820.42548 19 95.8118671 Root MSE = 4.0743

--
income | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
educ | 1.933393 .2099494 9.21 0.000 1.490438 2.376347
jobexp | .6493654 .1721589 3.77 0.002 .2861417 1.012589
 _cons | -7.096855 3.626412 -1.96 0.067 -14.74792 .5542052
--
```

Note that, when both EDUC and JOBEXP are in the equation, $b_1 = 1.933393$, $b_2 = .649365$, $\text{Cov}($Educ, Jobexp$) = -.2613$, $V($Educ$) = 20.05$, $V($Jobexp$) = 29.818$. Hence, if we omit Jobexp from the model, the new coefficient $b_1^*$ is

$$b_1^* = b_1 + b_2 \frac{\hat{\text{Cov}}(X_1, X_2)}{\hat{\text{V}}(X_1)} = 1.933393 + .649365 \frac{-2.613}{20.050} = 1.848765$$

Stata confirms that this is correct:

```
reg income educ
Source | SS df MS Number of obs = 20
-------------+------------------------------ F(1, 18) = 45.21
Model | 1302.05369 1 1302.05369 Prob > F = 0.0000
Residual | 518.371789 18 28.7984327 R-squared = 0.7152
-------------+------------------------------ Adj R-squared = 0.6994
Total | 1820.42548 19 95.8118671 Root MSE = 5.3664

--
income | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
educ | 1.84876 .2749479 6.72 0.000 1.271116 2.426404
 _cons | 2.137446 3.523734 0.61 0.552 -5.265645 9.540537
--
```

Or, if we instead omit EDUC from the equation, for $b_2^*$ we get
\[ b_1^* = b_2 + b_1 \frac{\hat{\text{Cov}}(X_1, X_2)}{\hat{\Sigma}(X_2)} = 0.649365 + 1.933393 \frac{-2.613}{29.818} = 0.479928616 \]

Stata again confirms this:
\[
. \text{reg income jobexp}
\]

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>130.495675</td>
<td>1</td>
<td>130.495675</td>
<td>F( 1, 18) = 1.39</td>
</tr>
<tr>
<td>Residual</td>
<td>1689.9298</td>
<td>18</td>
<td>93.8849889</td>
<td>Prob &gt; F = 0.2538</td>
</tr>
<tr>
<td>Total</td>
<td>1820.42548</td>
<td>19</td>
<td>95.8118671</td>
<td>R-squared = 0.0717</td>
</tr>
</tbody>
</table>

| income | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|--------|-------|-----------|---|------|-----------------------|
| jobexp | 0.4799311 | 0.4070792 | 1.18 | 0.254 | -0.3753106 - 1.335173 |
| _cons  | 18.34387 | 5.586783 | 3.28 | 0.004 | 6.606476 - 30.08127 |

If we assume that the model with both EDUC and JOBEXP is correct, omitting one or the other results in the effects of the remaining variable being mis-estimated.

In more complicated models with omitted variable, it will continue to be the case that observed effects represent a confounding of the actual effect with other sources of association.