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Logistic Regression, Part III: 
Hypothesis Testing, Comparisons to OLS 

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 
Last revised February 22, 2015 

 
This handout steals heavily from Linear probability, logit, and probit models, by John Aldrich and Forrest Nelson, 
paper # 45 in the Sage series on Quantitative Applications in the Social Sciences; and Applied Logistic Regression 
Analysis Second Edition by Scott Menard, paper # 106 in that series. This handout primarily uses Stata; an older 
version of the handout that used SPSS may also be available. 

WARNING: As Menard more or less points out, notation is wildly inconsistent across authors and programs when it 
comes to Logistic regression.  I’m trying to more or less follow Menard, but you’ll have to learn to adapt to 
whatever the author or statistical program happens to use. 

Overview.  In this handout, we’ll examine hypothesis testing in logistic regression and make 
comparisons between logistic regression and OLS.  A separate handout provides more detail 
about using Stata. The optional appendix to this handout provides more detail on how some of 
the key calculations are done. 

There are a number of logical analogs between OLS and Logistic regression, i.e. the math is 
different but the functions served are similar.  I will summarize these first, and then explain each 
of them in more detail: 

OLS Regression Logical Analog in Logistic Regression 

Total Sums of Squares -2LL0, DEV0, D0 

Error/ Residual Sums of Squares -2LLM, DEVM, DM 

Regression/Explained Sums of Squares Model Chi Square, L2, GM 

Global F Model Chi Square, L2, GM 

Incremental F Test Chi-Square Contrast/ Incremental chi-square 
contrast 

Incremental F Test and Wald test of the same 
hypotheses give identical results 

Chi-square contrast between models and a 
Wald test of the same hypotheses generally do 
NOT give exactly identical results. 

 

http://www3.nd.edu/%7Erwilliam/
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Using the same data as before, here is part of the output we get in Stata when we do a logistic 
regression of Grade on Gpa, Tuce and Psi. 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. logit  grade gpa tuce psi 
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.496795 
Iteration 2:   log likelihood = -12.929188 
Iteration 3:   log likelihood = -12.889941 
Iteration 4:   log likelihood = -12.889633 
Iteration 5:   log likelihood = -12.889633 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
[Rest of output deleted] 
 

Global tests of parameters.  In OLS regression, if we wanted to test the hypothesis that all β’s 
= 0 versus the alternative that at least one did not, we used a global F test.  In logistic regression, 
we use a likelihood ratio chi-square test instead.  Stata calls this LR chi2.  The value is 15.404.  
This is computed by contrasting a model which has no independent variables (i.e. has the 
constant only) with a model that does.  Following is a general description of how it works; the 
appendix provides a detailed example. 

The probability of the observed results given the parameter estimates is known as the likelihood.  
Since the likelihood is a small number less than 1, it is customary to use -2 times the log of the 
likelihood.  -2LL is a measure of how well the estimated model fits the likelihood.  A good 
model is one that results in a high likelihood of the observed results.  This translates to a small 
number for -2LL (If a model fits perfectly, the likelihood is 1, and -2 times the log likelihood is 
0).   

-2LL is also called the Deviance, DEV, or simply D.  Subscripts are often used to denote which 
model this particular deviance applies to. The smaller the deviance is, the better the model fits 
the data. 

The “initial log likelihood function” is for a model in which only the constant is included.  This 
is used as the baseline against which models with IVs are assessed.  Stata reports LL0, -20.59173, 
which is the log likelihood for iteration 0. -2LL0 = -2* -20.59173 = 41.18. 
 
-2LL0, DEV0, or simply D0 are alternative ways of referring to the deviance for a model which 
has only the intercept.  This is analogous to the Total Sums of Squares, SST, in OLS Regression.   
 
When GPA, PSI, and TUCE are in the model, -2LLM = -2 * -12.889633 = 25.78.  We can refer to 
this as DEVM or simply DM.   
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The -2LL for a model, or DEVM, indicates the extent to which the model fails to perfectly predict 
the values of the DV, i.e. it tells how much improvement is needed before the predictors provide 
the best possible prediction of the dependent variable. DEVM is analogous to the Error Sums of 
Squares, SSE, in OLS regression. 

The addition of these 3 parameters reduces -2LL by 15.40, i.e.  
DEV0 - DEVM = 41.183 – 25.779 = 15.40.  This is reflected in the Model Chi-square,  which 
Stata labels as LR chi2. 

The Model Chi-Square, also called Model L2 or GM, is analogous to the Regression (explained) 
Sums of Squares, SSR, in OLS regression.  It is also the direct counterpart to the Global F Test in 
regression analysis.  A significant value tells you that one or more betas differ from zero, but it 
doesn’t tell you which ones. 

GM = L2 = DEV0 - DEVM 

The significance level for the model chi-square indicates that this is a very large drop in chi-
square, ergo we reject the null hypothesis.  The effect of at least one of the IVs likely differs 
from zero.   

You can think of the Deviance as telling you how bad the model still is, while the Model L2 , aka 
GM tells you how good it is.  

Incremental Tests / Likelihood Ratio Chi-Square Tests.  There is also an analog to the 
incremental F test.  Just like with OLS, we can compare constrained and unconstrained models.  
We use an incremental chi-square square statistic instead of an incremental F statistic.  (More 
commonly, you see phrases like chi-square contrasts.) The difference between the deviances of 
constrained and unconstrained models has a chi-square distribution with degrees of freedom 
equal to the number of constraints. 

Incremental chi-square test/ chi-square contrast (analog to incremental F test) 

L2 =  DEVConstrained - DEVUnconstrained, d.f. = number of constraints 

If the resulting chi-square value is significant, stick with the unconstrained model; if insignificant 
then the constraints can be justified.  Alternatively, you’ll get the same results using 

L2 = Model L2 Unconstrained – Model L2 Constrained, d.f. = number of constraints 

The notation L2 is used to signify that this is a Likelihood Ratio Chi Square test (as opposed to, 
say, a Pearson Chi-Square test, which has less desirable properties).  Again, notation is wildly 
inconsistent across authors.  G2 is another notation sometime used. 

WARNING: In OLS, an incremental F test and a Wald test give you the same results.  In logistic 
regression, a chi-square contrast between models and a Wald test generally do NOT give 
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identical results.  LR chi-square contrasts are considered better but in large samples it may not 
matter much. 

Nested Models-Stata.  In Stata, we can get incremental and global LR chi-square tests easily 
by using the nestreg command.  We should include the lr option so we get likelihood ratio 
tests rather than Wald tests.  The quietly option suppresses a lot of the intermediate 
information, but don’t use it if you want to see those results. 

. nestreg, lr quietly: logit  grade gpa tuce psi 
 
Block  1: gpa 
Block  2: tuce 
Block  3: psi 
 
  +----------------------------------------------------------------+ 
  | Block |        LL       LR     df  Pr > LR       AIC       BIC | 
  |-------+--------------------------------------------------------| 
  |     1 |  -16.2089     8.77      1   0.0031   36.4178  39.34928 | 
  |     2 | -15.99148     0.43      1   0.5096  37.98296  42.38017 | 
  |     3 | -12.88963     6.20      1   0.0127  33.77927  39.64221 | 
  +----------------------------------------------------------------+ 

 

With Stata, you can also use the lrtest command to do likelihood ratio contrasts between 
models, e.g.  

. quietly logit  grade gpa 

. est store m1 

. quietly logit  grade gpa tuce 

. est store m2 

. quietly logit  grade gpa tuce psi 

. est store m3 

. lrtest m1 m2 
 
Likelihood-ratio test                                  LR chi2(1)  =      0.43 
(Assumption: m1 nested in m2)                          Prob > chi2 =    0.5096 
 
. lrtest m2 m3 
 
Likelihood-ratio test                                  LR chi2(1)  =      6.20 
(Assumption: m2 nested in m3)                          Prob > chi2 =    0.0127 

 

Stepwise Logistic Regression-Stata.  As with other Stata commands, you can use the sw 
prefix for stepwise regression.  We can add the lr option so that likelihood-ratio, rather than 
Wald, tests are used when deciding the variables to enter next. 
 



Logistic Regression, Part III Page 5 
 

. sw, lr pe(.05) : logit  grade  gpa tuce psi 
 
LR test               begin with empty model 
p = 0.0031 <  0.0500  adding  gpa 
p = 0.0130 <  0.0500  adding  psi 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(2)      =      14.93 
                                                  Prob > chi2     =     0.0006 
Log likelihood = -13.126573                       Pseudo R2       =     0.3625 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   3.063368    1.22285     2.51   0.012     .6666251     5.46011 
         psi |   2.337776   1.040784     2.25   0.025     .2978755    4.377676 
       _cons |  -11.60157   4.212904    -2.75   0.006    -19.85871   -3.344425 
------------------------------------------------------------------------------ 

 
Tests of Individual Parameters.  Testing whether any individual parameter equals zero 
proceeds pretty much the same way as in OLS regression. You can, if you want, do an 
incremental LR chi-square test.  That, in fact, is the best way to do it, since the Wald test referred 
to next is biased under certain situations. For individual coefficients, Stata reports z values, 
which is b/sb. 

. logit  grade gpa tuce psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
         psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 

With Stata, you can also continue to use the test command.  The test command does Wald 
tests, which aren’t as good as LR tests but which may be adequate in large samples, e.g. 
 
. * Test whether effects of gpa and tuce are both 0 
. test gpa tuce 
 
 ( 1)  gpa = 0 
 ( 2)  tuce = 0 
 
           chi2(  2) =    6.35 
         Prob > chi2 =    0.0418 
 
. * Test whether effects of gpa and psi are equal 
. test gpa = psi 
 
 ( 1)  gpa - psi = 0 
 
           chi2(  1) =    0.11 
         Prob > chi2 =    0.7437 
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R2 Analogs.    As Menard points out in Applied Logistic Regression Analysis, Second Edition, 
several people have tried to come up with the equivalent of an R2 measure for logistic regression.  
No one of these measures seems to have achieved widespread acceptance yet.  One of the 
simplest and most popular formulas is 
 

Pseudo R2 = Model L2/ DEV0 = 1 – DEVM/DEV0 = 1 – LLM/LL0 
 
where, as you’ll recall, DEV0 (or -2LL0 ) pertains to the baseline model with intercept only.  
(Menard refers to this as R2

L; it is also called McFadden R2 ; Stata just calls it Pseudo R2.  Be 
careful when reading, since the term Pseudo R2 gets applied to a lot of different statistics.)  This 
statistic will equal zero if all coefficients are zero.  It will come close to 1 if the model is very 
good.  In the present case, for the model with gpa, psi and tuce included, 
 

Pseudo R2 = Model L2/ DEV0 = 15.404/41.183 = .374 
 

Menard (p. 27) argues for the Pseudo R2
 statistic on the grounds that it is conceptually closest to 

OLS R2  i.e. it reflects a proportionate reduction in the quantity actually being minimized, -2LL.  
However, as I explain in my categorical data class, you can make a logical case for most of the 
Pseudo R2 measures. 

Other ways of assessing “Goodness of Fit.”    There are other ways to assess whether or not 
the model fits the data.  For example, there is the classification table. The command in Stata is 
estat class (you can also just use lstat) 

. quietly logit  grade gpa tuce psi 

. estat class 
 
Logistic model for grade 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |         8             3  |         11 
     -     |         3            18  |         21 
-----------+--------------------------+----------- 
   Total   |        11            21  |         32 
 
Classified + if predicted Pr(D) >= .5 
True D defined as grade != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   72.73% 
Specificity                     Pr( -|~D)   85.71% 
Positive predictive value       Pr( D| +)   72.73% 
Negative predictive value       Pr(~D| -)   85.71% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)   14.29% 
False - rate for true D         Pr( -| D)   27.27% 
False + rate for classified +   Pr(~D| +)   27.27% 
False - rate for classified -   Pr( D| -)   14.29% 
-------------------------------------------------- 
Correctly classified                        81.25% 
--------------------------------------------------  
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In the classification table, cases with probabilities ≥ .50 are predicted as having the event, other 
cases are predicted as not having the event.  Ideally, you would like to see the two groups have 
very different estimated probabilities.  In this case, of the 21 people who did not get A’s, the 
model correctly predicted 18 would not but said that 3 would.   Similarly, of the 11 who got A’s, 
the model was right on 8 of them. 

From the classification table, you can’t tell how great the errors are.  The 6 misclassified cases 
may have been within one or two percentage points of being classified correctly, or they may 
have been way off.  For “rare” events, I am not sure how useful the table is.  A 10% probability 
may be relatively high, but still not high enough to get the case classified as a 1 (e.g. there may 
be only 1 chance in a 1000 of the average 20 year old dying within the year; identifying those for 
whom the odds are 1 in 10 of dying may be quite useful.) Menard goes on at some length about 
other possible classification/prediction strategies. 

Diagnostics.  It can also be useful to run various diagnostics.  These help to indicate areas or 
cases for which the model is not working well.  Menard lists several statistics for looking at 
residuals.  Menard also briefly discusses some graphical techniques that can be useful.  Also see 
Hamilton’s Statistics with Stata for some ideas. 

In Stata, you can again use the predict command to compute various outliers. As was the case 
with OLS, Stata tends to use different names than SPSS and does some computations differently. 
Cases 2 and 27 seem to be the most problematic. 

. * Generate standardized residuals  

. predict p 
(option pr assumed; Pr(grade)) 
. predict rstandard, rstandard 
. extremes rstandard p grade gpa tuce psi 
 
  +---------------------------------------------------------+ 
  | obs:   rstandard          p   grade    gpa   tuce   psi | 
  |---------------------------------------------------------| 
  |  27.   -2.541286   .8520909       0   3.51     26     1 | 
  |  18.   -1.270176   .5898724       0   3.12     23     1 | 
  |  16.   -1.128117   .5291171       0    3.1     21     1 | 
  |  28.    -.817158   .3609899       0   3.53     26     0 | 
  |  24.   -.7397601   .3222395       0   3.57     23     0 | 
  +---------------------------------------------------------+ 
 
  +--------------------------------------------------------+ 
  |  19.   .8948758   .6354207       1   3.39     17     1 | 
  |  30.   1.060433    .569893       1      4     21     0 | 
  |  15.   1.222325    .481133       1   2.83     27     1 | 
  |  23.   2.154218   .1932112       1   3.26     25     0 | 
  |   2.   3.033444   .1110308       1   2.39     19     1 | 
  +--------------------------------------------------------+ 
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Summary: Comparisons with OLS.    There are many similarities between OLS and Logistic 
Regression, and some important differences.  I’ll try to highlight the most crucial points here. 

OLS and its extensions Logistic Regression 

Estimated via least squares Estimated via Maximum Likelihood. 

Y is continuous, can take on any value Y can only take on 2 values, typically 0 and 1 

X’s are continuous vars.  Categorical variables are 
divided up into dummy variables 

Same as OLS 

X’s are linearly related to Y; in the case of the 
LPM, X’s are linearly related to P(Y=1) 

X’s are linearly related to log odds of event 
occurring.  Log odds, in turn, are nonlinearly 
related to P(Y = 1). 

Y’s are statistically independent of each other, e.g., 
don’t have serial correlation, don’t include 
husbands and their wives as separate cases 

Same as OLS 

Robust standard errors can be used when error 
terms are not independent and identically 
distributed. 

Same as OLS.  Stata makes this easy (just add a 
robust parameter), SPSS does not. 

There can be no perfect multicollinearity among 
the X’s.  High levels of multicollinearity can result 
in unstable sample estimates and large standard 
errors 

Same as OLS.  Techniques for detecting 
multicollinearity are also similar.  In fact, as 
Menard points out, you could just run the 
corresponding OLS regression, and then look at the 
correlations of the IVs, the tolerances, variance 
inflation factors, etc. Or, use Stata’s collin 
command. 

Missing data can be dealt with via listwise deletion, 
pairwise deletion, mean substitution, multiple 
imputation 

Pairwise deletion isn’t an option.  Can’t do “mean 
substitution” on the DV.  Otherwise, can use 
techniques similar to those that we’ve described for 
OLS. 

Global F test is used to test whether any IV effects 
differ from 0.  d.f. = K, N-K-1 

Model chi-square statistic (also known as Model L2 
or G2 or GM) is used for same purpose.  D.F. = 
number of IVs in the model = K. 

Incremental F test is used to test hypotheses 
concerning whether subset of coefficients = 0.  If 
you specify variables in blocks, the F change 
statistic will give you the info you need. 

LR Chi-square statistic is used.    

DEVConstrained - DEVUnconstrained 

Model L2 Unconstrained – Model L2 Constrained 

T test or incremental F test is used to test whether 
an individual coefficient = 0 

Can use a LR chi square test (preferable) or Wald 
statistic (probably usually ok, but not always). 
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Incremental F tests or T tests can be used to test 
equalities of coefficients within a model, equalities 
across populations, interaction effects. 

Same basic procedures, substituting LR chi square 
tests for F tests. 

Wald tests (as produced by the test command in 
stata) will produce the same results as incremental 
F tests.  A nice thing about Wald tests is that they 
only require the estimation of the unconstrained 
model. 

Wald tests can be performed, but they will 
generally NOT produce exactly the same results as 
LR tests.  LR tests (which require the estimation of 
constrained and unconstrained models) are 
preferable, although in practice results will often be 
similar. 

Can have interaction effects.  Centering can 
sometimes make main effects easier to interpret.  If 
you center the continuous vars, then the main effect 
of an IV like race is equal to the difference in the 
predicted values for an “average” black and white. 

NOT quite the same as OLS.  You can use 
interaction terms, but there are potential problems 
you should be aware of when interpreting results.  
See Allison (1999) or Williams (2009, 2010) for 
discussions.  If you center, then the main effect of 
an IV like race is equal to the difference in the log 
odds for an “average” black and white. 

Can do transformations of the IVs and DV to deal 
with nonlinear relationships, e.g. X2, ln(X), ln(Y). 

Same as OLS for the IVs, but you of course can’t 
do transformations of the dichotomous DV. 

Can plot Y against X, examine residuals, plot X 
against residuals, to identify possible problems 
with the model 

Similar to OLS.  Can examine residuals. 

Can do mindless, atheoretical stepwise regression Similar to OLS 

R2 tells how much of total variance is “explained”.   Numerous Pseudo R2 stats have been proposed.  If 
you use one, make clear which one it is. 

Can look at standardized betas. There is actually a reasonable case for using 
standardized coefficients in logistic regression.  
Long & Freese’s spostado routines include the 
listcoef command, which can do various types 
of standardization. 

Can do path analysis.  Can decompose association.  
Can estimate recursive and nonrecursive models.  
Programs like LISREL can deal with measurement 
error. 

Most ideas of the “logic of causal order” still apply.  
But, many things, such as decomposition of effects, 
controlling for measurement error, estimating 
nonrecursive models, are much, much harder to do.  
There is work going on in this area, e.g. Lisrel, M-
Plus, gllamm (an add-on routine to Stata). 
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Related Topics.  Here is a super-quick look at other techniques for analyzing categorical data.  

Probit.  Probit models are an alternative to Logit models.  They tend to produce almost identical 
results, and logit models are usually easier to work with.  For some types of problems, there are 
more advanced probit techniques that can be useful. 

Multinomial Logit.  You can also have a dependent variable with more than two categories, e.g. 
the dependent variable might take the values Republican, Democrat, Other.  The idea is that you 
talk about the probability of being in one group as opposed to another.  In SPSS, use NOMREG, 
in Stata use mlogit. 

Ordered Logit.  Sometimes DVs are ordinal.  Sometimes, it is ok to just treat them as interval-
level and use OLS regression.  But, other times an Ordered Logit routine is preferable.  SPSS has 
PLUM. Stata has the built-in ologit and oprobit.  Stata also has various user-written 
routines, including Williams’s oglm and gologit2. 
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Appendix (Optional): Computing the log likelihood.  This is adapted from J. Scott Long’s 
Regression Models for Categorical and Limited Dependent Variables. 

Define pi as the probability of observing whatever value of y was actually observed for a given 
observation, i.e. 
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If the observations are independent, the likelihood equation is 
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The likelihood tends to be an incredibly small number, and it is generally easier to work with the 
log likelihood.  Ergo, taking logs, we obtain the log likelihood equation: 
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Before proceeding, let’s see how this works in practice!  Here is how you compute pi and the log 
of pi using Stata: 

. quietly  logit grade gpa tuce psi 

. * Compute probability that y = 1 

. predict pi  
(option p assumed; Pr(grade)) 
. * If y = 0, replace pi with probability y = 0 
. replace pi = 1 - pi if grade == 0 
(21 real changes made) 
. * compute log of pi 
. gen lnpi = ln(pi) 
 
. list  grade pi lnpi, sep(8) 
 
     +------------------------------+ 
     | grade         pi        lnpi | 
     |------------------------------| 
  1. |     0   .9386242   -.0633401 | 
  2. |     1   .1110308   -2.197947 | 
  3. |     0   .9755296   -.0247748 | 
     |     --- Output deleted ---   | 
 30. |     1    .569893   -.5623066 | 
 31. |     1   .9453403   -.0562103 | 
 32. |     1   .6935114   -.3659876 | 
     +------------------------------+ 

 

So, this tells us that the predicted probability of the first case being 0 was .9386.  The probability 
of the second case being a 1 was .111.  The probability of the 3rd case being a 0 was .9755; and 
so on.  The likelihood is therefore 
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which is a really small number; indeed so small that your computer or calculator may have 
trouble calculating it correctly (and this is only 32 cases; imagine the difficulty if you have 
hundreds of thousands). Much easier to calculate is the log likelihood, which is 

88963.12366....198.20633.ln)(ln
1
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=

N

i
ipL Xy,|β  

Stata’s total command makes this calculation easy for us: 

. total lnpi 
 
Total estimation                    Number of obs    =      32 
 
-------------------------------------------------------------- 
             |      Total   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
        lnpi |  -12.88963   3.127734     -19.26869   -6.510578 
-------------------------------------------------------------- 

 

Note: The maximum likelihood estimates are those values of the parameters that make the 
observed data most likely.  That is, the maximum likelihood estimates will be those values which 
produce the largest value for the likelihood equation (i.e. get it as close to 1 as possible; which is 
equivalent to getting the log likelihood equation as close to 0 as possible). 
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