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Models for Count Outcomes 
Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 

Last revised April 12, 2022 
 
These notes borrow heavily (sometimes verbatim) from Long 1997, Regression Models for Categorical and Limited 
Dependent Variables, and Long & Freese, 2003 Regression Models for Categorical Dependent Variables Using 
Stata, Revised Edition, and also the 2014 3rd  edition of Long & Freese. For rcpoisson, see Right-censored 
Poisson regression model, Stata Journal 2011, 11(1) pp. 95-105. Materials prepared by my former teaching 
assistant, the late Jamie Przybysz, are also incorporated in these notes. 

 
Variables that count the # of times something happens are common in the Social Sciences. 

• Hausman looked at effect of R & D expenditures on # of patents received by US 
companies 

• Grogger examined deterrent effects of capital punishment on daily homicides 
• King examined effect of # of alliances on the # of nations at war 
• Long looked at # of publications of scientists 

 
Count variables are often treated as though they are continuous and the linear regression model is 
applied; but this can result in inefficient, inconsistent and biased estimates. Fortunately, there are 
many models that deal explicitly with count outcomes. 
 

• The most basic is the Poisson Regression Model (PRM). In the PRM the probability 
of a count is determined by a Poisson distribution, where the mean of the distribution 
is a function of the IVs. The conditional mean of the outcome is equal to the 
conditional variance.  

• In practice, however, the conditional variance often exceeds the conditional mean. 
The Negative Binomial Regression Model (NBRM) deals with this problem by 
allowing the variance to exceed the mean. 

• The PRM and NBRM are covered in the main handout. Other more advanced models 
are briefly covered in the appendix. 
o Many count variables are only observed after the first count occurs. For example, 

we may not have a list of every Sociologist; we only have a list of those who have 
published at least one article. This requires a Truncated Count Model. 

o Another problem is that the # of 0’s in a sample often exceeds the # predicted by 
either the PRM or the NBRM. Zero Modified Count Models explicitly model the # 
of predicted 0s, and also allow the variance to differ from the mean. For example, 
sometimes the process that generates zeros is believed to be different than the 
process that generates higher counts. Hurdle Models and Zero-Inflated Models are 
among the ways to deal with this. 

 
The Poisson Distribution. 
 
Let y be a random variable indicating the # of times an event has occurred during an interval of 
time. y has a Poisson distribution with parameter μ > 0 if 
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2 Exp(-μ) μ2/2 
3 Exp(-μ) μ3/6 
4 Exp(-μ) μ4/24 

So, for example, with 50 events occurring to 100 units, we find the following: 
 
Prop(0) = [(.50)*(e-.5)/1] = .61 (61 of the 100 units will experience no events) 
Prop(1) = [(.51)*(e-.5)/1] = .30 (30 of the 100 units will experience 1 event) 
Prop(2) = [(.52)*(e-.5)/(2*1)] = .08 (8 of the 100 units will experience 2 events) 
Prop(3) = [(.53)*(e-.5)/(3*2*1)] = .01 (1 of the 100 units will experience 3 events) 
Prop(4) = [(.54)*(e-.5)/(4*3*2*1)] = .002 (not substantively meaningful here, as it is too small,) 
Prop(5) = [(.55)*(e-.5)/(5*4*3*2*1)] = .0002 (but presented to show the example calculations ) 
 
This figure shows what the Poisson distribution looks like for different values of μ 

 
Image copied from http://www.cmh.edu/stats/model/poiss10.htm 
 
Key properties of the Poisson distribution: 
 

• As μ increases, the mass of the distribution shifts to the right. Specifically, E(y) = μ. 
The parameter μ is known as the rate since it is the expected # of times that an event 
has occurred per unit of time. μ can also be thought of as the mean or expected count. 

• The variance equals the mean. The equality of the mean and the variance is known as 
equidispersion. In practice, count variables often have a variance that is greater than 
the mean, which is called overdispersion. The development of many models for count 
data is an attempt to account for overdispersion. 

• As μ increases, the probability of 0s decreases. For μ = .8, the probability of a 0 is 
.45. For μ = 1.5, it is .22, for μ = 2.9, it is .05; and for μ = 10.5, the probability is 
.00002. For many count variables, there are more observed 0s than predicted by the 
Poisson distribution. 

• As μ increases, the Poisson distribution approximates a normal distribution. 
 

http://www.cmh.edu/stats/model/poiss10.htm
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A critical assumption of a Poisson process is that events are independent; this means that when 
an event occurs it does not affect the probability of an event occurring in the future. For example, 
this implies that when a scientist publishes a paper, her rate of publication does not change. Past 
success in publishing does not affect future success. 
 
As noted, the actual variance is often larger than a Poisson process would suggest. One likely 
explanation is that μ differs across individuals, e.g. not all scientists are equally productive. This 
is known as heterogeneity. For example, suppose that for men, mean productivity = μ + δ, and 
for women it is μ – δ. If the number of men and women is equal, the mean productivity will be μ, 
but the variance will exceed μ. In general, failure to account for heterogeneity among individuals 
in the rate of a count variable leads to overdispersion. This leads to the Poisson Regression 
Model which introduces heterogeneity based on observed characteristics. 
 
Poisson Regression Model 
 
In the PRM, the # of events y has a Poisson distribution with a conditional mean that depends on 
an individual’s characteristics: 
 

)exp()|( βµ iiii xxyE ==  
 
Note the exponentiation forces the expected count to be positive. It can also be written as (and 
this is more consistent with the way we have written all our other models) 
 

βµ ii x=)ln(  
 
Under this model, as μ increases, the conditional variance of y increases, the proportion of 
predicted 0s decreases and the distribution around the expected value becomes approximately 
normal. 
 
The PRM can be thought of as a non-linear regression model with errors equal to ε = y – E(y|x). 
The errors have a Poisson distribution. But, we cannot use OLS as the regression technique for 
data that resemble a Poisson distribution because in the Poisson, the mean (μ) = Variance of x. 
As μ increases, so does the variance around it. (You’ll recall that OLS assumes a constant 
variance.) The dispersion of data increases as μ increases. Since the level of the DV affects 
dispersion, the errors in a Poisson regression are inherently heteroskedastic. The PRM is, in fact, 
another case of the Generalized Linear Model that we have been talking about and is estimated 
via maximum likelihood. The family is Poisson (errors have a Poisson distribution) and the link 
is log (the log of E(Y) is the dependent variable). 
 
You can use the parameters to compute the probability distribution for a given level of the IVs. 
For a given x, the probability that y = m is 
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The PRM model should do better than a univariate Poisson distribution. Still, it can under predict 
0s and have a variance that is greater than the conditional mean. Hence, other models have been 
developed which we will discuss shortly. 
 
Estimating the PRM in Stata. The poisson command is used to estimate Poisson Regression 
Models. Long and Freese present an analysis of the number of publications produced by Ph.D. 
biochemists: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/couart4.dta, clear 
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24) 
 
. sum art female married kid5 mentor phd 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         art |       915    1.692896    1.926069          0         19 
      female |       915    .4601093    .4986788          0          1 
     married |       915    .6622951     .473186          0          1 
        kid5 |       915     .495082      .76488          0          3 
      mentor |       915    8.767213    9.483916          0         77 
-------------+-------------------------------------------------------- 
         phd |       915    3.103109    .9842491       .755       4.62 
 

Note that the mean # of articles published is 1.69. Note too that the variance is 1.9262 = 3.71, 
which is substantially more than the mean.  
 
We now estimate a simple model with constant-only. If this model is valid, then every academic 
biochemist has the same rate of productivity. 
 
. poisson art, nolog 
 
Poisson regression                                Number of obs   =        915 
                                                  LR chi2(0)      =       0.00 
                                                  Prob > chi2     =          . 
Log likelihood = -1742.5735                       Pseudo R2       =     0.0000 
 
------------------------------------------------------------------------------ 
         art |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       _cons |   .5264408   .0254082    20.72   0.000     .4766416      .57624 
------------------------------------------------------------------------------ 
 

Note that the coefficient for the constant is .52664408. Further, note that exp(.52664408) = 
1.693, the same as the mean given in the earlier descriptive statistics. 
 
Your intuition probably tells you that this model does not make much sense – but how do you 
test it? You can do so with the estat gof post-estimation command (the older poisgof 
command also works) 
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. estat gof 
 
         Deviance goodness-of-fit =  1817.405 
         Prob > chi2(914)         =    0.0000 
 
         Pearson goodness-of-fit  =  2002.901 
         Prob > chi2(914)         =    0.0000 
 

This command compares the observed distribution with the distribution predicted by a Poisson 
distribution. The highly significant test statistic indicates that this is not a very good model. Long 
and Freese describe a procedure for comparing the predicted with the observed distribution. 
Their post-estimation command mgen computes the predicted rate and predicted probabilities of 
each count from 0 to the specified maximum for every observation.  
 
. mgen, pr(0/9) meanpred stub(psn) 
 
Predictions from:  
 
Variable   Obs Unique       Mean        Min       Max  Label 
-------------------------------------------------------------------------------------- 
psnval      10     10        4.5          0         9  Articles in last 3 yrs of PhD 
psnobeq     10     10   .0993443   .0010929  .3005464  Observed proportion 
psnoble     10     10   .8328962   .3005464  .9934427  Observed cum. proportion 
psnpreq     10     10   .0999988   .0000579   .311469  Avg predicted Pr(y=#) 
psnprle     10     10   .8307106   .1839859  .9999884  Avg predicted cum. Pr(y=#) 
psnob_pr    10     10  -.0006546  -.0691068  .1165605  Observed - Avg Pr(y=#) 
-------------------------------------------------------------------------------------- 
 
. label var psnobeq "Observed Proportion" 
. label var psnpreq "Poisson Prediction" 
. label var psnval "# of articles" 
. list psnval psnobeq psnpreq in 1/10 
 
     +------------------------------+ 
     | psnval    psnobeq    psnpreq | 
     |------------------------------| 
  1. |      0   .3005464   .1839859 | 
  2. |      1   .2688525    .311469 | 
  3. |      2   .1945355   .2636424 | 
  4. |      3   .0918033    .148773 | 
  5. |      4    .073224   .0629643 | 
     |------------------------------| 
  6. |      5   .0295082   .0213184 | 
  7. |      6   .0185792    .006015 | 
  8. |      7   .0131148   .0014547 | 
  9. |      8   .0010929   .0003078 | 
 10. |      9   .0021858   .0000579 | 
     +------------------------------+ 

 
As you can see, when the mean is 1.69, a Poisson distribution predicts that 18.39% of the cases 
will be zeros; but in reality more than 30% are. You also see more people than predicted in the 
3+ range. If you want to graph this (and can remember the command!): 
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. graph twoway connected psnobeq psnpreq psnval, /// 
>    ytitle("Probability") ylabel(0(.1).4) xlabel(0/9) msym(O Th) 
 

 
 
Of course, we never believed in that model anyway. Productivity may differ by gender, marital 
status, number of young children, prestige of the graduate program, and the number of articles 
written by a scientist’s mentor. If so, mixing together scientists who differ in their rate of 
productivity can cause the univariate distribution of the articles to be overdispersed, i.e. have a 
variance greater than its mean. To account for these differences we add IVs to our model: 
 
. poisson  art i.female i.married kid5 phd mentor, nolog 
 
Poisson regression                                Number of obs   =        915 
                                                  LR chi2(5)      =     183.03 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1651.0563                       Pseudo R2       =     0.0525 
 
------------------------------------------------------------------------------ 
         art |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |  -.2245942   .0546138    -4.11   0.000    -.3316352   -.1175532 
             | 
     married | 
    Married  |   .1552434   .0613747     2.53   0.011     .0349512    .2755356 
        kid5 |  -.1848827   .0401272    -4.61   0.000    -.2635305   -.1062349 
         phd |   .0128226   .0263972     0.49   0.627     -.038915    .0645601 
      mentor |   .0255427   .0020061    12.73   0.000     .0216109    .0294746 
       _cons |   .3046168   .1029822     2.96   0.003     .1027755    .5064581 
------------------------------------------------------------------------------ 
 
. estat gof 
 
         Deviance goodness-of-fit =  1634.371 
         Prob > chi2(909)         =    0.0000 
 
         Pearson goodness-of-fit  =  1662.547 
         Prob > chi2(909)         =    0.0000 
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Alas, the fit still isn’t very good. Repeating our earlier procedure: 
 
. mgen, pr(0/9) meanpred stub(psn) replace 
 
Predictions from:  
 
Variable   Obs Unique       Mean        Min       Max  Label 
--------------------------------------------------------------------------------------
psnval      10     10        4.5          0         9  Articles in last 3 yrs of PhD 
psnobeq     10     10   .0993443   .0010929  .3005464  Observed proportion 
psnoble     10     10   .8328962   .3005464  .9934427  Observed cum. proportion 
psnpreq     10     10   .0998819   .0009304  .3098447  Avg predicted Pr(y=#) 
psnprle     10     10   .8308733   .2092071  .9988188  Avg predicted cum. Pr(y=#) 
psnob_pr    10     10  -.0005376  -.0475604  .0913393  Observed - Avg Pr(y=#) 
-------------------------------------------------------------------------------------- 
 
. label var psnobeq "Observed Proportion" 
. label var psnpreq "Poisson Prediction" 
. label var psnval "# of articles" 
. list psnval psnobeq psnpreq in 1/10 
 
     +------------------------------+ 
     | psnval    psnobeq    psnpreq | 
     |------------------------------| 
  1. |      0   .3005464   .2092071 | 
  2. |      1   .2688525   .3098447 | 
  3. |      2   .1945355    .242096 | 
  4. |      3   .0918033   .1346656 | 
  5. |      4    .073224   .0611696 | 
     |------------------------------| 
  6. |      5   .0295082   .0249554 | 
  7. |      6   .0185792   .0099346 | 
  8. |      7   .0131148   .0041384 | 
  9. |      8   .0010929    .001877 | 
 10. |      9   .0021858   .0009304 | 
     +------------------------------+ 
 
. graph twoway connected psnobeq psnpreq psnval, /// 
>    ytitle("Probability") ylabel(0(.1).4) xlabel(0/9) msym(O Th) 
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Again, we see more observed zeroes than predicted zeros. We’ll talk about some alternatives to 
this model, but first we’ll talk about how to interpret the parameters we have got. 
 

Optional: Relationship to the Generalized Linear Model. As noted before, Poisson 
Regression models are a special case of the Generalized Linear Model. Therefore they can also 
be estimated with the glm command: 
 
. glm art i.female i.married kid5 phd mentor, family(poisson) link(log) 
 
Iteration 0:   log likelihood = -1670.3221   
Iteration 1:   log likelihood = -1651.1048   
Iteration 2:   log likelihood = -1651.0563   
Iteration 3:   log likelihood = -1651.0563   
 
Generalized linear models                          No. of obs      =       915 
Optimization     : ML                              Residual df     =       909 
                                                   Scale parameter =         1 
Deviance         =  1634.370984                    (1/df) Deviance =  1.797988 
Pearson          =   1662.54655                    (1/df) Pearson  =  1.828984 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
 
                                                   AIC             =  3.621981 
Log likelihood   = -1651.056316                    BIC             = -4564.031 
 
------------------------------------------------------------------------------ 
             |                 OIM 
         art |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |  -.2245942   .0546138    -4.11   0.000    -.3316352   -.1175532 
             | 
     married | 
    Married  |   .1552434   .0613747     2.53   0.011     .0349512    .2755356 
        kid5 |  -.1848827   .0401272    -4.61   0.000    -.2635305   -.1062349 
         phd |   .0128226   .0263972     0.49   0.627     -.038915    .0645601 
      mentor |   .0255427   .0020061    12.73   0.000     .0216109    .0294746 
       _cons |   .3046168   .1029822     2.96   0.003     .1027755    .5064581 
------------------------------------------------------------------------------ 

 
 
Interpreting the Results of the PRM. In their current form, the beta coefficients tell us how 
much a 1 unit increase in each X causes the log of μ to increase. Since that isn’t the most 
intuitive idea in the world, it will be useful to exponentiate the coefficients. We can do this by 
adding the irr parameter (which, mathematically, does the exact same thing as the odds ratio 
parameter we have used in the past; but irr stands for incident rate ratio, with the idea being that 
the coefficient tells you how changes in X affect the rate at which Y occurs (keeping in mind that 
the terms rate and mean stand for the same thing here.) 
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. poisson  art i.female i.married kid5 phd mentor, nolog irr 
 
Poisson regression                                Number of obs   =        915 
                                                  LR chi2(5)      =     183.03 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1651.0563                       Pseudo R2       =     0.0525 
 
------------------------------------------------------------------------------ 
         art |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |   .7988403   .0436277    -4.11   0.000     .7177491    .8890932 
             | 
     married | 
    Married  |   1.167942   .0716821     2.53   0.011     1.035569    1.317236 
        kid5 |   .8312018   .0333538    -4.61   0.000     .7683342    .8992134 
         phd |   1.012905   .0267379     0.49   0.627     .9618325     1.06669 
      mentor |   1.025872    .002058    12.73   0.000     1.021846    1.029913 
       _cons |   1.356105   .1396546     2.96   0.003     1.108243    1.659403 
------------------------------------------------------------------------------ 
 

These coefficients tell us that, on an all other things equal basis, 
• Females publish 80% as many articles as males, i.e. are 20% less productive 
• Married people are about 17% more productive than unmarried people 
• Each additional child multiplies the rate of productivity by .83, e.g. somebody with 

one child will only produce 83% as many articles as somebody with no children. 
• The prestige of the PHD institution doesn’t have much effect 
• For each additional article a mentor publishes, productivity gets multiplied by 

1.025872, i.e. there is about a 2.6% increase per article. (But remember, you do 
compounding, not addition, as you figure the effect of increases in X that are greater 
than one. 

 

Optional: Old commands used in slightly new ways. The margins command is also 
helpful. Note that the default asobserved is being used instead of atmeans. 
 
. margins female married 
 
Predictive margins                                Number of obs   =        915 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
       Male  |   1.863249    .062788    29.68   0.000     1.740187    1.986312 
     Female  |   1.488439   .0614126    24.24   0.000     1.368072    1.608805 
             | 
     married | 
     Single  |   1.526787   .0742234    20.57   0.000     1.381312    1.672263 
    Married  |     1.7832   .0576126    30.95   0.000     1.670281    1.896118 
------------------------------------------------------------------------------ 
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. margins, dydx(*) 
 
Average marginal effects                          Number of obs   =        915 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
dy/dx w.r.t. : 1.female 1.married kid5 phd mentor 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |  -.3748107   .0900846    -4.16   0.000    -.5513733   -.1982481 
             | 
     married | 
    Married  |    .256412   .0990332     2.59   0.010     .0623105    .4505135 
        kid5 |  -.3129872    .068395    -4.58   0.000     -.447039   -.1789354 
         phd |   .0217073   .0446911     0.49   0.627    -.0658857    .1093003 
      mentor |   .0432412   .0035694    12.11   0.000     .0362454    .0502371 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 
 

The results tell us that, after controlling for other variables, on average woman publish .375 
fewer articles than men; and on average, married people publish .256 more articles. 
 
The mcp command is also good: 
 
. mcp mentor female 
 

 
 
Even though there are no interaction terms in the model, we see that the expected differences 
between men and women are small when mentors have low productivity, and gradually become 
much larger. 
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mchange continues to be useful: 
 
. mchange 
 
poisson: Changes in mu | Number of obs = 915 
 
Expression: Predicted number of art, predict() 
 
                   |    Change    p-value  
-------------------+---------------------- 
female             |                       
    Female vs Male |    -0.375      0.000  
married            |                       
 Married vs Single |     0.256      0.010  
kid5               |                       
                +1 |    -0.286      0.000  
               +SD |    -0.223      0.000  
          Marginal |    -0.313      0.000  
phd                |                       
                +1 |     0.022      0.629  
               +SD |     0.022      0.629  
          Marginal |     0.022      0.627  
mentor             |                       
                +1 |     0.044      0.000  
               +SD |     0.464      0.000  
          Marginal |     0.043      0.000  
 
Average prediction 
 
    1.693  

 
The listcoef command can also be used here: 
 
. listcoef, help 
 
poisson (N=915): Factor change in expected count  
 
  Observed SD:  1.9261 
 
------------------------------------------------------------------------- 
             |          b        z    P>|z|       e^b   e^bStdX     SDofX 
-------------+----------------------------------------------------------- 
      female | 
     Female  |    -0.2246   -4.112    0.000     0.799     0.894     0.499 
             | 
     married | 
    Married  |     0.1552    2.529    0.011     1.168     1.076     0.473 
        kid5 |    -0.1849   -4.607    0.000     0.831     0.868     0.765 
         phd |     0.0128    0.486    0.627     1.013     1.013     0.984 
      mentor |     0.0255   12.733    0.000     1.026     1.274     9.484 
    constant |     0.3046    2.958    0.003         .         .         . 
------------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
     e^b = exp(b) = factor change in expected count for unit increase in X 
 e^bStdX = exp(b*SD of X) = change in expected count for SD increase in X 
   SDofX = standard deviation of X 
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The main additional piece of information you are gaining here is the effect on productivity of a 1 
standard deviation increase in X. Alternatively, we can get the percent change produced by 
changes in X with the following: 
 
. listcoef, help percent 
 
poisson (N=915): Percentage change in expected count  
 
  Observed SD:  1.9261 
 
------------------------------------------------------------------------- 
             |          b        z    P>|z|         %     %StdX     SDofX 
-------------+----------------------------------------------------------- 
      female | 
     Female  |    -0.2246   -4.112    0.000     -20.1     -10.6     0.499 
             | 
     married | 
    Married  |     0.1552    2.529    0.011      16.8       7.6     0.473 
        kid5 |    -0.1849   -4.607    0.000     -16.9     -13.2     0.765 
         phd |     0.0128    0.486    0.627       1.3       1.3     0.984 
      mentor |     0.0255   12.733    0.000       2.6      27.4     9.484 
    constant |     0.3046    2.958    0.003         .         .         . 
------------------------------------------------------------------------- 
       b = raw coefficient 
       z = z-score for test of b=0 
   P>|z| = p-value for z-test 
       % = percent change in expected count for unit increase in X 
   %StdX = percent change in expected count for SD increase in X 
   SDofX = standard deviation of X 

 
 
Exposure time. So far we have implicitly assumed that each observation was “at risk” of an 
event occurring for the same amount of time. This need not be true; for example, scientists may 
have received their Ph.D.s in different years. Amount of time in career will certainly affect the 
number of publications. Further, if exposure time is correlated with our variables, e.g. men have 
had the Ph.D.s longer than women have, we may get very misleading results. 
 
Since the data from our example do not include exposure data, we will make some up. The 
variable profage corresponds to the scientists professional age which corresponds to the amount 
of time a scientist has been exposed to the risk of publishing. In the following, men have an 
average professional age of 30, while women have an average professional age of 15: 
 
. set seed 123456 
. gen profage = (10 + invnorm(uniform())) * 3 if female == 0 
(421 missing values generated) 
. set seed 1234567 
. replace  profage = (5 + invnorm(uniform())) * 3 if female == 1 
(421 real changes made) 
. bysort female: sum profage 
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-------------------------------------------------------------------------------------- 
-> female = Male 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     profage |       494    29.98072    2.888995   21.81031    39.3049 
 
-------------------------------------------------------------------------------------- 
-> female = Female 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
     profage |       421    14.73158     3.16198   6.919592   24.08156 

 
As Long and Freese note, there are different ways to incorporate exposure time into Poisson 
models. The simplest may be to use the exposure option.  
 
. poisson art i.female i.married kid5 phd ment, nolog exposure(profage) irr 
 
Poisson regression                                Number of obs   =        915 
                                                  LR chi2(5)      =     239.98 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1671.3634                       Pseudo R2       =     0.0670 
 
------------------------------------------------------------------------------ 
         art |        IRR   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |   1.631257   .0889582     8.97   0.000     1.465896    1.815271 
             | 
     married | 
    Married  |     1.1572   .0709218     2.38   0.017      1.02622    1.304897 
        kid5 |   .8341539   .0333962    -4.53   0.000     .7712009    .9022459 
         phd |   1.025738   .0270875     0.96   0.336     .9739977    1.080226 
      mentor |   1.025974    .002049    12.84   0.000     1.021966    1.029998 
       _cons |   .0435926   .0045095   -30.29   0.000     .0355926    .0533908 
 ln(profage) |          1  (exposure) 
------------------------------------------------------------------------------ 
 

Notice how this dramatically changes our estimate of the effect of gender; once we control for 
exposure time, women are much more productive than men. In other words, their lower 
productivity is due to the fact that they haven’t had their Ph.Ds as long. Hence, failing to control 
for exposure time could create a very misleading impression. 

 
 
Negative Binomial Regression Model 
 
The PRM accounts for observed heterogeneity (i.e. observed differences among sample 
members) by specifying the rate μ as a function of the observed Xs. In practice, the PRM rarely 
fits, because of overdispersion. That is, the model underestimates the amount of dispersion in the 
outcome. If the mean structure from the PRM is correct, but there is overdispersion in the 
estimates, 

• PRM estimates are consistent, but inefficient 
• Standard errors will be biased downward resulting in spuriously large z-values 
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The NBRM adds a parameter that allows the conditional variance of y to exceed the conditional 
mean. In the NBRM, the mean μ is replaced with the random variable µ~ : 
 

)exp(~
iii x εβµ +=  

 
where ε is a random error that is assumed to be uncorrelated with x. You can think of ε as either 
the combined effects of unobserved variables that have been omitted from the model or as 
another source of pure randomness. 
 
Put another way, in the PRM, variation in μ is introduced through observed heterogeneity. In the 
NBRM, you also have variation due to unobserved heterogeneity. For a given combination of xs 
there is a distribution of μs rather than a single μ. The conditional mean is still μ, but the variance 
will be greater because of the error term. 
 
 

Optional. The relationship between mu-squiggle and mu is 
 

iiiiii x µδεµεβµ === )exp()exp()exp(~  
 

The NBRM is not identified without an assumption about the mean of the error term, and the 
most convenient assumption is that the mean is 1. (This is analogous to assuming in OLS 
regression that the mean of the residuals is 0). Hence, 
 

iiiiiii x µµδεµεβµ ==== )exp()exp()exp(~  
 
What is the distribution of delta? The most common assumption is that delta has a gamma 
distribution with parameter v. If delta has a gamma distribution, then E(delta) = 1 and Var(delta) 
= 1/v. 
 
The expected value of y for the Negative Binomial distribution is the same as for the Poisson 
distribution, but the conditional variance differs: 
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Since mu and v are positive, the conditional variance of y in the NBRM must exceed the 
conditional mean exp(xB). 
 
If v varies by individuals, then there are more parameters than there are observations. The most 
common identifying assumption is that v is the same for all individuals (again note the 
similarities with OLS): 
 

0  for    1 >= − ααiv  
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α is known as the dispersion parameter since increasing α increases the conditional variance of 
y. Substituting back into our formula for the conditional variance of y, 
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Note that, if alpha = 0, the mean and variance become one and the same, and you have a Poisson 
model.  

 
The larger conditional variance in y increases the relative frequency of low and high counts. The 
NB distribution corrects a number of sources of poor fit that are often found when the Poisson 
distribution is used: 

• The variance of the NB distribution exceeds the variance of the Poisson distribution 
for a given mean 

• The increased variance in the NBRM results in substantially larger probabilities for 
small counts. 

• There are slightly larger probabilities for larger counts in the NB distribution. 
 
 
Optional: Heterogeneity and Contagion. Our discussion so far has motivated the NB 
distribution by talking about unobserved heterogeneity. An alternative derivation is based on the 
idea of contagion. Contagion occurs when individuals with a given set of Xs have the same 
probability of an event occurring, but this probability changes as events occur. For example, 
suppose a scientist publishes a paper. Her rate of productivity may go up as a result of contagion 
from the initial publication. She might receive additional resources as a result of her success 
which will lead to further increases in productivity. A second scientist, who had the same initial 
rate of productivity, would have his rate stay the same so long as he did not publish. The process 
is contagious in the sense that success in publishing increases the rate of future publishing. 
Contagion violates the independence assumption of the Poisson distribution. 
 
Unobserved heterogeneity and contagion can both generate the same NB distribution of observed 
counts. Consequently, heterogeneity is sometimes referred to as “spurious” or “apparent” 
contagion, as opposed to “true” contagion. With cross-sectional data, it is impossible to 
determine whether the observed distribution of counts arose from true or spurious contagion. 
 
Testing for overdispersion. Remember that, with the PRM, if overdispersion is present then 
estimates are inefficient and standard errors are biased downward. It is therefore important to test 
for overdispersion. There are various ways to do this. The approaches described below take 
advantage of the fact that the PRM is a special case of the NBRM, when α = 0. Alpha is the 
dispersion parameter; if it equals 0 there is no over-dispersion. 
 
1. You can do a 1-tailed test of H0: α = 0. (The test is one-tailed, because α cannot be less 
than zero.) Stata’s nbreg routine reports this for you automatically: 
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. use https://www3.nd.edu/~rwilliam/statafiles/couart4.dta, clear 
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24) 
 
. nbreg  art i.female i.married kid5 phd ment, nolog 
 
Negative binomial regression                      Number of obs   =        915 
                                                  LR chi2(5)      =      97.96 
Dispersion     = mean                             Prob > chi2     =     0.0000 
Log likelihood = -1560.9583                       Pseudo R2       =     0.0304 
 
------------------------------------------------------------------------------ 
         art |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |  -.2164184   .0726724    -2.98   0.003    -.3588537   -.0739832 
             | 
     married | 
    Married  |   .1504895   .0821063     1.83   0.067    -.0104359    .3114148 
        kid5 |  -.1764152   .0530598    -3.32   0.001    -.2804105     -.07242 
         phd |   .0152712   .0360396     0.42   0.672    -.0553652    .0859075 
      mentor |   .0290823   .0034701     8.38   0.000     .0222811    .0358836 
       _cons |    .256144   .1385604     1.85   0.065    -.0154294    .5277174 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -.8173044   .1199372                     -1.052377   -.5822318 
-------------+---------------------------------------------------------------- 
       alpha |   .4416205   .0529667                      .3491069    .5586502 
------------------------------------------------------------------------------ 
Likelihood-ratio test of alpha=0:  chibar2(01) =  180.20 Prob>=chibar2 = 0.000 
 
As we see from the last line of the printout, alpha significantly differs from 0. Incidentally, what 
the program actually estimates is ln(alpha). This forces the estimated alpha to be positive. 
 
2. You can do the LR chi-square test yourself by estimating both the Poisson and NBRM: 
 
. quietly poisson  art i.female i.married kid5 phd ment, nolog 
. est store poisson 
. quietly nbreg  art i.female i.married kid5 phd ment, nolog 
. est store nbreg 
. lrtest poisson nbreg, stats force 
 
Likelihood-ratio test                                 LR chi2(1)  =    180.20 
(Assumption: poisson nested in nbreg)                 Prob > chi2 =    0.0000 
 
Akaike's information criterion and Bayesian information criterion 
 
----------------------------------------------------------------------------- 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+--------------------------------------------------------------- 
     poisson |    915   -1742.573   -1651.056      6     3314.113    3343.026 
       nbreg |    915   -1609.937   -1560.958      7     3135.917    3169.649 
----------------------------------------------------------------------------- 
               Note:  N=Obs used in calculating BIC; see [R] BIC note 
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3. You can do a Wald test of ln(alpha) = 1 (which corresponds to a test of alpha = 0): 
 
. test [lnalpha]_cons = 1 
 
 ( 1)  [lnalpha]_cons = 1 
 
           chi2(  1) =  229.59 
         Prob > chi2 =    0.0000 

 
To confirm this: 
 

15213295.15
1199372.

8173044.1
1199372.

18173044.
=

−
=

−−  

 
Square the above and you get 229.59 
 
 
Clearly, overdispersion is a problem with the PRM in this case, and the NBRM should be 
preferred. This side by side comparison of the PRM and NBRM further illustrates the point: 
 
. est table poisson nbreg, t varlabel varwidth(32) stats(alpha N) b(%9.3f) 
 
---------------------------------------------------------- 
                        Variable |  poisson      nbreg     
---------------------------------+------------------------ 
art                              | 
                          female | 
                         Female  |    -0.225      -0.216   
                                 |     -4.11       -2.98   
                                 | 
                         married | 
                        Married  |     0.155       0.150   
                                 |      2.53        1.83   
                   # of kids < 6 |    -0.185      -0.176   
                                 |     -4.61       -3.32   
                    PhD prestige |     0.013       0.015   
                                 |      0.49        0.42   
          Mentor's # of articles |     0.026       0.029   
                                 |     12.73        8.38   
                        Constant |     0.305       0.256   
                                 |      2.96        1.85   
---------------------------------+------------------------ 
lnalpha                          | 
                        Constant |                -0.817   
                                 |                 -6.81   
---------------------------------+------------------------ 
Statistics                       |                         
                           alpha |                 0.442   
                               N |       915         915   
---------------------------------------------------------- 
                                               legend: b/t 
 

As we see, the Poisson distribution consistently has higher t values than the NBREG distribution. 
The Poisson estimates are less precise and you are more likely to conclude that an effect differs 
from zero when in reality it does not. 
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Optional: Interpretation. Interpretation of the NBRM is pretty much the same as the PRM. 
Using the margins command, 
 
. quietly nbreg  art i.female i.married kid5 phd ment 
. margins female married 
 
Predictive margins                                Number of obs   =        915 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
       Male  |   1.868735   .0869613    21.49   0.000     1.698294    2.039176 
     Female  |   1.505076   .0823171    18.28   0.000     1.343737    1.666414 
             | 
     married | 
     Single  |   1.542236   .1002205    15.39   0.000     1.345808    1.738665 
    Married  |     1.7927    .079988    22.41   0.000     1.635926    1.949474 
------------------------------------------------------------------------------ 
 
. margins, dydx(*) 
 
Average marginal effects                          Number of obs   =        915 
Model VCE    : OIM 
 
Expression   : Predicted number of events, predict() 
dy/dx w.r.t. : 1.female 1.married kid5 phd mentor 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
      female | 
     Female  |  -.3636591   .1211958    -3.00   0.003    -.6011984   -.1261197 
             | 
     married | 
    Married  |   .2504638   .1337954     1.87   0.061    -.0117703     .512698 
        kid5 |  -.3007755   .0914704    -3.29   0.001    -.4800543   -.1214967 
         phd |   .0260362   .0614472     0.42   0.672    -.0943981    .1464706 
      mentor |   .0495833   .0065477     7.57   0.000     .0367501    .0624166 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 

 
Using the listcoef command,  
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. listcoef 
 
nbreg (N=915): Factor change in expected count  
 
  Observed SD:  1.9261 
 
------------------------------------------------------------------------- 
             |          b        z    P>|z|       e^b   e^bStdX     SDofX 
-------------+----------------------------------------------------------- 
      female | 
     Female  |    -0.2164   -2.978    0.003     0.805     0.898     0.499 
             | 
     married | 
    Married  |     0.1505    1.833    0.067     1.162     1.074     0.473 
        kid5 |    -0.1764   -3.325    0.001     0.838     0.874     0.765 
         phd |     0.0153    0.424    0.672     1.015     1.015     0.984 
      mentor |     0.0291    8.381    0.000     1.030     1.318     9.484 
    constant |     0.2561    1.849    0.065         .         .         . 
-------------+----------------------------------------------------------- 
alpha        | 
     lnalpha |    -0.8173        .        .         .         .         . 
       alpha |     0.4416        .        .         .         .         . 
------------------------------------------------------------------------- 
  LR test of alpha=0: 180.20   Prob>=LRX2 = 0.000 
 
Perhaps the most helpful column is e^b (which you can also get by specifying the irr option on nbreg). If you 
prefer, you can get equivalent results with the percent option: 
 
. listcoef, percent 
 
nbreg (N=915): Percentage change in expected count  
 
  Observed SD:  1.9261 
 
------------------------------------------------------------------------- 
             |          b        z    P>|z|         %     %StdX     SDofX 
-------------+----------------------------------------------------------- 
      female | 
     Female  |    -0.2164   -2.978    0.003     -19.5     -10.2     0.499 
             | 
     married | 
    Married  |     0.1505    1.833    0.067      16.2       7.4     0.473 
        kid5 |    -0.1764   -3.325    0.001     -16.2     -12.6     0.765 
         phd |     0.0153    0.424    0.672       1.5       1.5     0.984 
      mentor |     0.0291    8.381    0.000       3.0      31.8     9.484 
    constant |     0.2561    1.849    0.065         .         .         . 
-------------+----------------------------------------------------------- 
alpha        | 
     lnalpha |    -0.8173        .        .         .         .         . 
       alpha |     0.4416        .        .         .         .         . 
------------------------------------------------------------------------- 
  LR test of alpha=0: 180.20   Prob>=LRX2 = 0.000 
 
Looking at the % column, we see that, on an all other things equal basis, women are 19.5% less productive than 
men; married people are 16.2% more productive; each additional child lowers productivity by 16.2% (again, 
remember to compound, not add, for units greater than 1, e.g. somebody with 3 kids would have a rate .83832 = 
58.9% as great as somebody with no children); each additional article by a mentor adds 3% productivity. 
 
See Long and Freese (2014) for additional examples, or else try the commands yourself. There aren’t many new 
surprises here given what we have gone over before. 
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Appendix: Advanced Models for Count Outcomes (Optional) 
 
This appendix briefly covers more advanced count models that are sometimes needed. You 
should read Long & Freese or other sources if you need to better understand or use these models. 
The models discussed are 

• Zero Truncated Models – these are used when the sample selection procedures exclude 
cases with 0 counts. For example, we may not have a list of every Sociologist; we only 
have a list of those who have published at least one article. 

• Hurdle Models – Sometimes you may believe that zeros are generated by a different 
process from that of positive counts. Zero is a “hurdle” that you have to get past before 
reaching positive counts (but everyone has a nonzero probability of doing so). Hurdle 
regression models combine a binary model (e.g. logit) to predict zeros with a zero-
truncated Poisson or zero-truncated negative binomial model to predict nonzero counts. 

• Zero-Inflated Count Models – Zero-inflated models assume that there are two latent 
groups. One group has no chance of going beyond zero, e.g. they might be scientists in 
fields or companies that do not allow publishing. We call this Group A, the Always Zero 
Group. Members of the other group may have a zero count, but the probability of having 
a positive count is nonzero, e.g. a scientist who could publish may or may not do so. We 
call this Group –A, the Not Always Zero Group. Zero-Inflated models allow for this 
possibility, thereby increasing the conditional variance and the probability of zero counts. 

 
Models for Truncated Counts 
 
Sometimes observations with outcomes equal to zero are missing from the sample because of the 
way the data are collected. For example, we may not have a list of every Sociologist; we only 
have a list of those who have published at least one article. Or, a survey of how often people visit 
the shopping mall may be done of people who are currently at the mall. Of, if you have bought a 
TV, the warranty card may ask you how many other TVs you have. In each case, observations 
with a value of 0 are not included in the sample. Zero-truncated count models are designed for 
such situations. 
 
Long & Freese (2014) go through the math on pp. 519-520. A key thing to note is that the 
adverse effects of over-dispersion are worse with truncated models. Estimates are biased and 
inefficient if there is overdispersion. You should estimate a zero-truncated negative binomial 
model to test for overdispersion. 
 
The ztp (zero truncated Poisson) and ztnb (zero truncated negative binomial) commands can 
be used. Output is similar to the poisson and nbreg commands. If zero counts are missing 
from your data because of the way the data were collected, and zero counts are generated by the 
same process as positive counts, interpretation is also similar.  
 
NOTE: In Stata 12, these commands were replaced by tpoisson and tnbreg. Their main 
advantage is that you can specify a truncation point other than zero. 
 
NOTE: There is also a user-written command for right-censored data called rcpoisson. 
Quoting from the article that introduced the command, 
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For example, a researcher who is interested in alcohol consumption patterns among male college 
students may define binge drinking as “five or more drinks in one sitting” and may code the 
dependent variable as 0, 1, 2, . . . , 5 or more drinks. In this case, the number of drinks consumed 
will be censored at five… Applying a traditional Poisson regression model to censored data will 
produce biased and inconsistent estimates. Intuitively, when the data are right-censored, large 
values of the dependent variable are coded as small and the conditional mean of the dependent 
variable and the marginal effects will be attenuated. 

 
Hurdle Models 
 
Sometimes you may believe that zeros are generated by a different process from that of positive 
counts. Zero is a “hurdle” that you have to get past before reaching positive counts (but everyone 
has a nonzero probability of doing so). Hurdle regression models combine a binary model (e.g. 
logit) to predict zeros with a zero-truncated Poisson or zero-truncated negative binomial model 
to predict nonzero counts.  
 
Long & Freese (2014) show how to estimate hurdle models, even though there is no “official” 
Stata command for doing so. (There are some user-written commands by the late Joe Hilbe, but I 
am not sure they still work correctly.) Compare the following results with those reported by 
Long & Freese (2014) on p. 530: 
 
. * Hurdle Models - Adapted from Long & Freese 3rd edition, section 9.5  
. use https://www3.nd.edu/~rwilliam/statafiles/couart4, clear 
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24) 
 
. * Run logit model. Nonzero values are treated as 1s by logit command. 
. quietly logit art female married kid5 phd mentor, or nolog 
. est store Hlogit 
 
. * Run Zero-truncated nbreg. Keep cases where articles are > 0 
. quietly ztnb art female married kid5 phd mento if art>0, nolog irr 
. est store Hztnb 
 
. * You need suest to get the standard errors right. 
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. suest Hlogit Hztnb, vce(robust) eform(expB) 
 
Simultaneous results for Hlogit, Hztnb 
 
                                                Number of obs     =        915 
 
------------------------------------------------------------------------------ 
             |               Robust 
             |       expB   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Hlogit_art   | 
      female |   .7779048   .1215446    -1.61   0.108     .5727031    1.056631 
     married |   1.385739   .2475798     1.83   0.068     .9763455    1.966796 
        kid5 |   .7518272   .0831787    -2.58   0.010     .6052643      .93388 
         phd |   1.022468   .0822485     0.28   0.782     .8733296    1.197075 
      mentor |   1.083419   .0154716     5.61   0.000     1.053515    1.114171 
       _cons |   1.267183   .3694752     0.81   0.417     .7155706    2.244016 
-------------+---------------------------------------------------------------- 
Hztnb_art    | 
      female |   .7829619   .0724833    -2.64   0.008     .6530404    .9387312 
     married |   1.108954   .1169726     0.98   0.327     .9018383    1.363636 
        kid5 |   .8579072   .0626125    -2.10   0.036      .743562    .9898365 
         phd |   .9970707   .0504934    -0.06   0.954     .9028585    1.101114 
      mentor |   1.024022   .0050724     4.79   0.000     1.014129    1.034012 
       _cons |   1.426359     .27488     1.84   0.065     .9776649    2.080979 
-------------+---------------------------------------------------------------- 
/Hztnb       | 
     lnalpha |   .5469076   .1302053                      .3429761    .8720957 
------------------------------------------------------------------------------ 
 
. * See Long & Freese section 9.5 for computing predictions, using margins  
 

The logit equation tells you what affects the likelihood of clearing the zero “hurdle.” Women, 
and those with kids under 5, are less likely to clear the hurdle. Married people, those who went to 
more prestigious PHD institutions, and those whose mentors are more productive are more likely 
to clear the hurdle. (Not all effects are significant though.) 
 
In the zero-truncated negative binomial part of the model, the coefficients indicate whether 
increases in the variable increase or decrease productivity. A variable can be significant in one 
part of the model, but not in the other part. 
 
Long & Freese (2014) show how to run margins and get the predicted probabilities of different 
counts, e.g. 0 articles, one article, etc. If you want them you have to use Long and Freese’s rather 
lengthy but straightforward procedure. 
 
Zero-Inflated Count Models 
 
Zero-inflated models assume that there are two latent groups. One group has no chance of going 
beyond zero, e.g. they might be scientists in fields or companies that do not allow publishing. We 
call this Group A, the Always Zero Group. Members of the other group may have a zero count, 
but the probability of having a positive count is nonzero, e.g. a scientist who could publish may 
or may not do so. We call this Group –A, the Not Always Zero Group. Zero-Inflated models 
allow for this possibility, thereby increasing the conditional variance and the probability of zero 
counts. 
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Estimating such models is a 3-step process. First, you model membership into the latent groups. 
Then, you model the counts for those in Group –A (Not Always Zero). Finally, you compute 
observed probabilities as a mixture of the probabilities for the two groups. 
 
The commands are zip and zinb. They include an inflate option. The vars specified in the 
inflate option are used to predict group membership.  
 
Long and Freese give examples and show how to make interpretation of results easier. 
 
NOTE: Paul Allison (http://www.statisticalhorizons.com/zero-inflated-models) asks “Do we 
really need zero-inflated models?” He says 
 

In all data sets that I’ve examined, the negative binomial model fits much better than a ZIP model, 
as evaluated by AIC or BIC statistics. And it’s a much simpler model to estimate and interpret. So 
if the choice is between ZIP and negative binomial, I’d almost always choose the latter. 
 
But what about the zero-inflated negative binomial (ZINB) model? It’s certainly possible that a 
ZINB model could fit better than a conventional negative binomial model regression model. But 
the latter is a special case of the former, so it’s easy to do a likelihood ratio test to compare them 
(by taking twice the positive difference in the log-likelihoods). In my experience, the difference in 
fit is usually trivial… 
 
So next time you’re thinking about fitting a zero-inflated regression model, first consider whether 
a conventional negative binomial model might be good enough. Having a lot of zeros doesn’t 
necessarily mean that you need a zero-inflated model. 

 
 
Comparisons of Count Models 
 
Long & Freese’s countfit command makes it easy to compare the results of PRM, NBRM, 
ZIP, and ZINB models. 
 

http://www.statisticalhorizons.com/zero-inflated-models
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. use http://www.indiana.edu/~jslsoc/stata/spex_data/couart4, clear 
(couart4.dta | Long data on Ph.D. biochemists | 2014-04-24) 
 
. countfit  art i.female i.married kid5 phd mentor, inflate(mentor i.female) replace 
 
-------------------------------------------------------------------------------- 
                      Variable |    PRM        NBRM         ZIP        ZINB      
-------------------------------+------------------------------------------------ 
art                            | 
                        female | 
                       Female  |     0.799       0.805       0.812       0.836   
                               |     -4.11       -2.98       -3.31       -2.40   
                               | 
                       married | 
                      Married  |     1.168       1.162       1.142       1.150   
                               |      2.53        1.83        2.01        1.72   
                 # of kids < 6 |     0.831       0.838       0.849       0.845   
                               |     -4.61       -3.32       -3.77       -3.22   
                  PhD prestige |     1.013       1.015       0.993       1.001   
                               |      0.49        0.42       -0.24        0.04   
        Mentor's # of articles |     1.026       1.030       1.018       1.025   
                               |     12.73        8.38        8.09        7.07   
                      Constant |     1.356       1.292       1.874       1.465   
                               |      2.96        1.85        5.54        2.69   
-------------------------------+------------------------------------------------ 
lnalpha                        | 
                      Constant |                 0.442                   0.375   
                               |                 -6.81                   -7.06   
-------------------------------+------------------------------------------------ 
inflate                        | 
        Mentor's # of articles |                             0.876       0.470   
                               |                             -3.23       -2.55   
                               | 
                        female | 
                       Female  |                             1.120       2.868   
                               |                              0.42        1.40   
                      Constant |                             0.484       0.275   
                               |                             -3.15       -2.14   
-------------------------------+------------------------------------------------ 
Statistics                     |                                                 
                         alpha |                 0.442                           
                             N |       915         915         915         915   
                            ll | -1651.056   -1560.958   -1605.644   -1552.034   
                           bic |  3343.026    3169.649    3272.659    3172.257   
                           aic |  3314.113    3135.917    3229.288    3124.068   
-------------------------------------------------------------------------------- 
                                                                     legend: b/t 
Comparison of Mean Observed and Predicted Count 
 
            Maximum       At      Mean 
Model     Difference    Value    |Diff| 
--------------------------------------------- 
PRM         0.091         0      0.026 
NBRM       -0.015         3      0.006 
ZIP         0.052         1      0.014 
ZINB       -0.019         3      0.008 
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PRM: Predicted and actual probabilities 
 
Count   Actual    Predicted    |Diff|   Pearson 
------------------------------------------------ 
0        0.301       0.209      0.091    36.489 
1        0.269       0.310      0.041     4.962 
2        0.195       0.242      0.048     8.549 
3        0.092       0.135      0.043    12.483 
4        0.073       0.061      0.012     2.174 
5        0.030       0.025      0.005     0.760 
6        0.019       0.010      0.009     6.883 
7        0.013       0.004      0.009    17.815 
8        0.001       0.002      0.001     0.300 
9        0.002       0.001      0.001     1.550 
------------------------------------------------ 
Sum      0.993       0.999      0.259    91.964 
 
NBRM: Predicted and actual probabilities 
 
Count   Actual    Predicted    |Diff|   Pearson 
------------------------------------------------ 
0        0.301       0.304      0.003     0.028 
1        0.269       0.272      0.003     0.039 
2        0.195       0.180      0.014     1.066 
3        0.092       0.106      0.015     1.818 
4        0.073       0.060      0.013     2.753 
5        0.030       0.033      0.004     0.348 
6        0.019       0.018      0.000     0.004 
7        0.013       0.010      0.003     0.719 
8        0.001       0.006      0.005     3.593 
9        0.002       0.004      0.001     0.456 
------------------------------------------------ 
Sum      0.993       0.993      0.062    10.824 
 
ZIP: Predicted and actual probabilities 
 
Count   Actual    Predicted    |Diff|   Pearson 
------------------------------------------------ 
0        0.301       0.298      0.003     0.022 
1        0.269       0.217      0.052    11.526 
2        0.195       0.210      0.016     1.095 
3        0.092       0.142      0.050    16.281 
4        0.073       0.076      0.002     0.071 
5        0.030       0.034      0.005     0.612 
6        0.019       0.014      0.005     1.346 
7        0.013       0.005      0.008     9.840 
8        0.001       0.002      0.001     0.447 
9        0.002       0.001      0.001     1.985 
------------------------------------------------ 
Sum      0.993       0.999      0.143    43.225 
 
ZINB: Predicted and actual probabilities 
 
Count   Actual    Predicted    |Diff|   Pearson 
------------------------------------------------ 
0        0.301       0.312      0.012     0.396 
1        0.269       0.256      0.013     0.611 
2        0.195       0.181      0.014     0.981 
3        0.092       0.110      0.019     2.889 
4        0.073       0.063      0.010     1.524 
5        0.030       0.035      0.005     0.709 
6        0.019       0.019      0.000     0.004 
7        0.013       0.010      0.003     0.710 
8        0.001       0.006      0.005     3.397 
9        0.002       0.003      0.001     0.302 
------------------------------------------------ 
Sum      0.993       0.995      0.081    11.522 
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Tests and Fit Statistics 
 
PRM            BIC=  3343.026  AIC=  3314.113  Prefer  Over  Evidence 
------------------------------------------------------------------------- 
  vs NBRM      BIC=  3169.649  dif=   173.377  NBRM    PRM   Very strong 
               AIC=  3135.917  dif=   178.196  NBRM    PRM 
               LRX2=  180.196  prob=    0.000  NBRM    PRM   p=0.000     
------------------------------------------------------------------------- 
  vs ZIP       BIC=  3272.659  dif=    70.367  ZIP     PRM   Very strong 
               AIC=  3229.288  dif=    84.824  ZIP     PRM 
               Vuong=   4.133  prob=    0.000  ZIP     PRM   p=0.000     
------------------------------------------------------------------------- 
  vs ZINB      BIC=  3172.257  dif=   170.769  ZINB    PRM   Very strong 
               AIC=  3124.068  dif=   190.045  ZINB    PRM 
------------------------------------------------------------------------- 
NBRM           BIC=  3169.649  AIC=  3135.917  Prefer  Over  Evidence 
------------------------------------------------------------------------- 
  vs ZIP       BIC=  3272.659  dif=  -103.010  NBRM    ZIP   Very strong 
               AIC=  3229.288  dif=   -93.372  NBRM    ZIP 
------------------------------------------------------------------------- 
  vs ZINB      BIC=  3172.257  dif=    -2.608  NBRM    ZINB  Positive 
               AIC=  3124.068  dif=    11.849  ZINB    NBRM 
               Vuong=   2.069  prob=    0.019  ZINB    NBRM  p=0.019     
------------------------------------------------------------------------- 
ZIP            BIC=  3272.659  AIC=  3229.288  Prefer  Over  Evidence 
------------------------------------------------------------------------- 
  vs ZINB      BIC=  3172.257  dif=   100.402  ZINB    ZIP   Very strong 
               AIC=  3124.068  dif=   105.221  ZINB    ZIP 
               LRX2=  107.221  prob=    0.000  ZINB    ZIP   p=0.000     
------------------------------------------------------------------------- 
 

Both the NBRM & ZINB consistently fit better than either the PRM or ZIP. BIC favors NBRM; 
AIC likes ZINB. 
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Additional Reading 
 
Sometimes you may want to do a regression where the dependent variable is the log of y rather 
than y. For example, you might want to use the log of income. In such instances, William Gould 
(President of Stata Corp) suggests that you may want to use poisson rather than regress. 
He explains why and how at 
 
http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/ 
 
Paul Allison questions the need for zero-inflated models. He says that Negative Binomial 
Regression models often might be good enough. See 
 
http://statisticalhorizons.com/zero-inflated-models 
 
We haven’t talked about fixed effects models yet. But Allison expresses concern about some of 
the approaches commonly used for Fixed Effects Negative Binomial Regression. See 
 
http://statisticalhorizons.com/fe-nbreg 
 

http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/
http://statisticalhorizons.com/zero-inflated-models
http://statisticalhorizons.com/fe-nbreg
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