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Brief Introduction to Generalized Linear Models 
Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 

Last revised January 3, 2022 
 
The purpose of this handout is to briefly show that several seemingly unrelated models are 
actually all special cases of the generalized linear model. (Indeed, I think most of these 
techniques were initially developed without people realizing they were interconnected.) We will 
also briefly introduce the use of factor variables and the margins command, both of which will 
be used heavily during the course. 
 
THE GENERALIZED LINEAR MODEL: 
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Where G(E(Y)) is some function of the expected value of Y and Y ~ F (i.e. Y has some sort of 
distribution, e.g. normal, binomial, logistic, etc.) G is referred to as the link function, while F is 
the distributional family. NOTE: I’m using notation similar to that used by the Stata 13 reference 
manual when describing the glm command; but rather than E(Y), E(Y|X) might be more precise. 
 
MODEL 1: OLS REGRESSION 
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. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. regress  income educ jobexp i.black 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  3,   496) =  787.14 
       Model |  33206.4588     3  11068.8196           Prob > F      =  0.0000 
    Residual |  6974.79047   496  14.0620776           R-squared     =  0.8264 
-------------+------------------------------           Adj R-squared =  0.8254 
       Total |  40181.2493   499  80.5235456           Root MSE      =  3.7499 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.840407   .0467507    39.37   0.000     1.748553    1.932261 
      jobexp |   .6514259   .0350604    18.58   0.000     .5825406    .7203111 
     1.black |   -2.55136   .4736266    -5.39   0.000    -3.481921   -1.620798 
       _cons |   -4.72676   .9236842    -5.12   0.000    -6.541576   -2.911943 
------------------------------------------------------------------------------ 
 

Note that  
• The notation i.black tells Stata that black is a categorical variable. In this case, it 

doesn’t affect the results (since black is already coded 0/1) but it would matter if the 
variable had more than 2 categories. In effect, Stata will create the dummy variables 
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Brief Introduction to Generalized Linear Models Page 2 

for you. Even more critically, post-estimation commands like margins work better 
when they know which variables are continuous and which are categorical. 

• Y has, or can have, a normal/Gaussian distribution. Alternatively, you can use 
regression if Y | X has a normal distribution (or equivalently, if the residuals have a 
normal distribution and other OLS assumptions are met). That is, the distributional 
“family” for Y is normal/Gaussian. 

• We predict E(Y). E(Y) is in the same units as Y. Alternatively, G(E(Y)) = E(Y). In 
this case G(E(Y)) is the identity link function. Hence, using the glm command, 

 
. glm income educ jobexp i.black, family(gaussian) link(identity) 
 
Iteration 0:   log likelihood = -1368.3316   
 
Generalized linear models                          No. of obs      =       500 
Optimization     : ML                              Residual df     =       496 
                                                   Scale parameter =  14.06208 
Deviance         =  6974.790467                    (1/df) Deviance =  14.06208 
Pearson          =  6974.790467                    (1/df) Pearson  =  14.06208 
 
Variance function: V(u) = 1                        [Gaussian] 
Link function    : g(u) = u                        [Identity] 
 
                                                   AIC             =  5.489327 
Log likelihood   = -1368.331633                    BIC             =  3892.345 
 
------------------------------------------------------------------------------ 
             |                 OIM 
      income |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.840407   .0467507    39.37   0.000     1.748777    1.932036 
      jobexp |   .6514259   .0350604    18.58   0.000     .5827087    .7201431 
     1.black |   -2.55136   .4736266    -5.39   0.000    -3.479651   -1.623069 
       _cons |   -4.72676   .9236842    -5.12   0.000    -6.537147   -2.916372 
------------------------------------------------------------------------------ 

 
MODEL 2: LOGISTIC REGRESSION. The logistic regression model (LRM) (also known as the 
logit model) can then be written as 
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The above is referred to as the log odds and also as the logit. Zi is used as a convenient shorthand 
for α + ΣβkXik. 
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. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit, clear 

. logit  grade gpa tuce i.psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
       1.psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 

 
Note that  

• When y is a dichotomy, it does not have a normal distribution; rather it has a 
binomial distribution (family binomial) 

• The left hand side is not E(Y), nor is the left-hand side in the same units as Y. The 
left hand side is expressed in log odds. We predict G(E(Y)), where G is the logit 
link function. Hence, expressing this as a GLM, 

 
. glm grade gpa tuce i.psi, family(binomial) link(logit) nolog 
 
Generalized linear models                          No. of obs      =        32 
Optimization     : ML                              Residual df     =        28 
                                                   Scale parameter =         1 
Deviance         =  25.77926693                    (1/df) Deviance =  .9206881 
Pearson          =  27.25711646                    (1/df) Pearson  =  .9734684 
 
Variance function: V(u) = u*(1-u)                  [Bernoulli] 
Link function    : g(u) = ln(u/(1-u))              [Logit] 
 
                                                   AIC             =  1.055602 
Log likelihood   = -12.88963347                    BIC             = -71.26134 
 
------------------------------------------------------------------------------ 
             |                 OIM 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507937    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
       1.psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931324    -2.64   0.008    -22.68657   -3.356129 
------------------------------------------------------------------------------ 

 
See the Appendix for a few additional examples of GLMs. In particular, the Appendix shows 
that even a simple crosstab is an example of a Generalized Linear Model! Other GLMs will be 
discussed during the semester. 
 
Stata’s glm program can estimate many models – OLS regression, logit, loglinear and count. It 
can’t do ordinal regression or multinomial logistic regression, but I think that is mostly just a 
limitation of the program, as these are considered GLMS too. Part of this gap is filled by my 
oglm program (ordinal generalized linear models). All in all, glm can estimate about 25 
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different combinations of link functions and families (many of which I have no idea why you 
would want to use them!) In most cases you don’t want to use glm because there are specialized 
routines which work more efficiently and which add other bells and whistles. But, this does serve 
to illustrate how several seemingly unrelated models are all actually special cases of a more 
general model. 
 

 
 

Appendix: Other GLM Examples 
 
MODEL 3: CROSS-CLASSIFIED DATA (loglinear model; in this specific case, model of 
independence). Consider a simple 2-way cross-classification of data. 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-cat, clear 
(Categorical Case II - Tests of Association) 
 
. tab female dem [fw=freq], chi2 lrchi2 expected 
+--------------------+ 
| Key                | 
|--------------------| 
|     frequency      | 
| expected frequency | 
+--------------------+ 
 
           |          dem 
    female |     0 Rep      1 Dem |     Total 
-----------+----------------------+---------- 
    0 Male |        65         55 |       120  
           |      57.0       63.0 |     120.0  
-----------+----------------------+---------- 
  1 Female |        30         50 |        80  
           |      38.0       42.0 |      80.0  
-----------+----------------------+---------- 
     Total |        95        105 |       200  
           |      95.0      105.0 |     200.0  
 
          Pearson chi2(1) =   5.3467   Pr = 0.021 
 likelihood-ratio chi2(1) =   5.3875   Pr = 0.020 

 
As the chi-square statistics indicate, gender and party affiliation are not independent of each 
other; females are more likely to be Democrats than are men. 
 
This is probably one of the first things you learned in introductory stats. What you may not have 
learned is that this can also be written as a loglinear model: 
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In this model, 
• The cell frequencies have a Poisson distribution, i.e. family Poisson 
• The left hand side is not the expected cell frequency; rather it is the log of the 

expected cell frequency. Hence, expressing this as a GLM 
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. glm freq i.female i.dem, family(poisson) link(log) 
 
Iteration 0:   log likelihood =  -14.13805   
Iteration 1:   log likelihood = -14.124228   
Iteration 2:   log likelihood = -14.124227   
 
Generalized linear models                          No. of obs      =         4 
Optimization     : ML                              Residual df     =         1 
                                                   Scale parameter =         1 
Deviance         =  5.387522771                    (1/df) Deviance =  5.387523 
Pearson          =  5.346700063                    (1/df) Pearson  =    5.3467 
 
Variance function: V(u) = u                        [Poisson] 
Link function    : g(u) = ln(u)                    [Log] 
 
                                                   AIC             =  8.562114 
Log likelihood   = -14.12422743                    BIC             =  4.001228 
 
------------------------------------------------------------------------------ 
             |                 OIM 
        freq |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
    1.female |  -.4054651   .1443376    -2.81   0.005    -.6883615   -.1225687 
       1.dem |   .1000835   .1415985     0.71   0.480    -.1774444    .3776114 
       _cons |   4.043051    .117727    34.34   0.000     3.812311    4.273792 
------------------------------------------------------------------------------ 

 
Note that the chi-square statistics in the original crosstab correspond to the Deviance and Pearson 
statistics presented in the GLM. Further, as the crosstab shows, under the model of independence 
the expected number of male Republicans is 57. To confirm, the formula for computing the 
expected cell frequency is 
 
P(Male) * P(Republican) * N = 95/200 * 120/200 * 200 = 57. 
 
Expressing things in terms of the glm, 
 

043051.4
0*1000835.0*4054651.043051.4

*1000835.*4054651.043051.4)icansale_RepublExpected_Mln(
1

=
+−=

+−=+= ∑
=

demfemaleX
K

k
ikkβα

 

 
Since the log of the expected cell frequency for male Republicans is 4.043051, this means that 
the expected cell frequency for male Republicans is exp(4.043051), which equals 57. 
 
Using the margins command (more on it later) we can easily reproduce all the expected 
frequencies under the model of independence: 
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. margins female#dem 
 
Adjusted predictions                              Number of obs   =          4 
Model VCE    : OIM 
 
Expression   : Predicted mean freq, predict() 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
  female#dem | 
        0 0  |         57    6.71044     8.49   0.000     43.84778    70.15222 
        0 1  |         63   7.143529     8.82   0.000     48.99894    77.00106 
        1 0  |         38    5.10196     7.45   0.000     28.00034    47.99966 
        1 1  |         42   5.479964     7.66   0.000     31.25947    52.74053 
------------------------------------------------------------------------------ 

 
So in other words, you could say that a generalized linear model with link log and family poisson 
produces a significant likelihood ratio chi-square statistic of 5.3875 with 1 d.f. – and many 
people would never guess that all you had done was run a simple crosstab! 
 
 
 
MODEL 4: PROBIT MODEL. The probit model is a popular alternative to logit, generally 
producing very similar predictions. The probit model can be written as 
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If y* >= 0, y = 1 
If y* < 0, y = 0 
 
The logit model can actually be written the same way, except the error term has a logistic 
distribution rather than Normal(0, 1). The parameter estimates in a logistic regression tend to be 
1.6 to 1.8 times higher than they are in a corresponding probit model. The predicted values in a 
probit model are like Z-scores. Somebody who has a predicted score of 0 has a 50% chance of 
success. Somebody with a score of 1 has about an 84% chance of success. 
 
We proceed as we did with logistic regression, except we use the probit command instead of 
logit, and with glm we specify link(probit) rather than link(logit). 
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. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit, clear 

. probit grade gpa tuce i.psi, nolog 
 
Probit regression                               Number of obs     =         32 
                                                LR chi2(3)        =      15.55 
                                                Prob > chi2       =     0.0014 
Log likelihood = -12.818803                     Pseudo R2         =     0.3775 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |    1.62581   .6938825     2.34   0.019     .2658255    2.985795 
        tuce |   .0517289   .0838903     0.62   0.537    -.1126929    .2161508 
       1.psi |   1.426332   .5950379     2.40   0.017     .2600795    2.592585 
       _cons |   -7.45232   2.542472    -2.93   0.003    -12.43547   -2.469166 
------------------------------------------------------------------------------ 
 
. glm grade gpa tuce i.psi, family(binomial) link(probit) nolog 
 
Generalized linear models                         No. of obs      =         32 
Optimization     : ML                             Residual df     =         28 
                                                  Scale parameter =          1 
Deviance         =  25.63760665                   (1/df) Deviance =   .9156288 
Pearson          =  26.25160404                   (1/df) Pearson  =   .9375573 
 
Variance function: V(u) = u*(1-u)                 [Bernoulli] 
Link function    : g(u) = invnorm(u)              [Probit] 
 
                                                  AIC             =   1.051175 
Log likelihood   = -12.81880332                   BIC             =    -71.403 
 
------------------------------------------------------------------------------ 
             |                 OIM 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |    1.62581   .6938825     2.34   0.019     .2658255    2.985795 
        tuce |   .0517289   .0838903     0.62   0.537    -.1126929    .2161508 
       1.psi |   1.426332   .5950379     2.40   0.017     .2600795    2.592585 
       _cons |   -7.45232   2.542472    -2.93   0.003    -12.43547   -2.469166 
------------------------------------------------------------------------------ 
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