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Maximum Likelihood Estimation & Troubleshooting 
Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/  

Last revised January 3, 2022 
 

[This handout draws very heavily from Regression Models for Categorical and Limited 
Dependent Variables, 1997, by J. Scott Long.  See Long’s book, especially sections 2.6, 3.5 and 
3.6 for additional details.] 

Most of the models we will look at are (or can be) estimated via maximum likelihood. 

Brief Definition. The maximum likelihood estimates are those values of the parameters that 
make the observed data most likely.   

• For OLS regression, you can solve for the parameters using algebra.  Algebraic 
solutions are rarely possible with nonlinear models like logistic regression.  
Consequently, numeric methods are used to find the estimates that maximize the log 
likelihood function.  Numerical methods start with a guess of the values of the 
parameters and iterate to improve on that guess.  The iterative process stops when 
estimates do not change much from one step to the next. 

• To say that something is the most likely value is not the same as saying it is likely; 
there are, after all, an infinite number of other parameter values that would produce 
almost the same observed data. 

• In the case of OLS regression, the maximum likelihood estimates and the OLS 
estimates are one and the same. 

Properties of ML estimators 

• The ML estimator is consistent. As the sample size grows large, the probability that 
the ML estimator differs from the true parameter by an arbitrarily small amount tends 
toward 0. 

• The ML estimator is asymptotically efficient, which means that the variance of the 
ML estimator is the smallest possible among consistent estimators. 

• The ML estimator is asymptotically normally distributed, which justifies various 
statistical tests. 

ML and Sample Size.  For ML estimation, the desirable properties of consistency, normality 
and efficiency are asymptotic, i.e. these properties have been proven to hold as the sample size 
approaches infinity.  The small sample behavior of ML estimators is largely unknown.  Long 
says there are no hard and fast rules for sample size.   

• He says it is risky to use ML with samples smaller than 100, while samples over 500 
seem adequate.   
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• More observations are needed if there are a lot of parameters – he suggests that at 
least 10 observations per parameter seems reasonable for the models he discusses. 

• If the data are ill-conditioned (e.g. IVs are highly collinear) or if there is little 
variation in the DV (e.g. nearly all outcomes are 1) a larger sample is required. 

• Some models seem to require more cases, e.g. ordinal regression models. 

• Both Long and Allison agree that the standard advice is that with small samples you 
should accept larger p-values as evidence against the null hypothesis.  Given that the 
degree to which ML estimates are normally distributed in small samples is unknown, 
it is actually more reasonable to require smaller p-values in small samples, e.g. use 
the .01 level of significance instead of .05. 

Potential Estimation Problems and Possible Solutions  

Occasionally, there are problems with ML numerical methods: 

• It may be difficult or impossible to reach convergence, e.g. you’ll get a message like 
“Convergence not obtained after 250 iterations.” 

• Convergence does occur, but you get the wrong solution (this is rare, but still, you 
might want to be suspicious if the numbers just don’t look right to you). 

• In some cases, ML estimates do not exist for a particular pattern of data.  For 
example, with a binary outcome and a single binary IV, ML estimates are not possible 
if there is no variation in the IV for one of the outcomes (e.g. everybody coded 1 on 
the IV is also coded 1 on the DV).  

Generic advice. Whenever any kind of program is having problems and it is unclear why, I 
recommend giving the commands 

update all 
adoupdate 

These will make sure your copy of Stata and any user-written programs you have installed are up 
to date. If you are really lucky, the problem you are having has already been fixed. If you do not 
have read/write access to your machine, e.g. you are working in a shared computer lab, you may 
have to beg some network administrator to update the version of Stata that is on the machine.  

Also, if you are using an older version of Stata (e.g. Stata 13) you may find the problem has been 
fixed in later versions. Whenever somebody who is using an ancient version of Stata comes to 
me with a problem, I like to rerun the problem on my machine if possible. 
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ML Advice. If you still seem to be having problems with your estimation, Long suggests the 
following: 

• Scaling of variables.  Scaling can be important.  The larger the ratio between the 
largest standard deviation and the smallest standard deviation, the more problems you 
will have with numerical methods.  For example, if you have income measured in 
dollars, it may have a very large standard deviation relative to other variables.  
Recoding income to thousands of dollars may solve the problem.  Long says that, in 
his experience, problems are much more likely when the ratio between the largest and 
smallest standard deviations exceeds 10. I have seen rescaling solve many problems.  

o You may want to rescale for presentation purposes anyway, e.g. the effect of 1 
dollar of income may be extremely small and have to be reported to several 
decimal places; coding income in thousands of dollars may make your tables look 
better. 

• Model specification.  Make sure the software is estimating the model you want to 
estimate, i.e. make sure you haven’t made a mistake in specifying what you want to 
run.  (And, if it is running what you wanted it to run, make sure that what you wanted 
it to do actually makes sense!) 

• Incorrect variables.  Make sure the variables are correct, e.g. variables have been 
computed correctly.  Check the descriptive statistics.  Long says his experience is that 
most problems with numerical methods are due to data that have not been “cleaned.” 

• Number of observations.  Convergence generally occurs more rapidly when there are 
more observations.  Not that there is much you can do about sample size, but this may 
explain why you are having problems. 

• Distribution of outcomes.   If one of the categories of a categorical variable has very 
few cases, convergence may be difficult. Long says you can’t do much about this, but 
I think you could sometimes combine categories. 

I also suggest 

• Adding the difficult option to a command sometimes works wonders. It usually 
does nothing and may even make things worse, but it is easy to try. This is often the 
first thing I do, and occasionally it works miracles. 

• Simplify the model and gradually add more variables to it. You may be able to 
identify the variables that are causing you grief. 

• Try using a different program that uses a different algorithm; a problem that may be 
very difficult for one algorithm may work quite well for another. 

When the model is appropriate for the data, Long says that ML estimation tends to work well and 
convergence is often achieved within 5 iterations.   
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Appendix: Brief Example 

Expanded Definition.  The maximum likelihood estimate is that value of the parameter that 
makes the observed data most likely. That is, the maximum likelihood estimates will be those 
values which produce the largest value for the likelihood equation (i.e. get it as close to 1 as 
possible; which is equivalent to getting the log likelihood equation as close to 0 as possible). 

Example. This is adapted from J. Scott Long’s Regression Models for Categorical and Limited 
Dependent Variables. Most real research examples will involve more cases and more parameters 
but the general principle is the same. 

Define pi as the probability of observing whatever value of y was actually observed for a given 
observation, i.e. 
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So, for example, if the predicted probability of the event occurring for case i was .7, and the 
event did occur, then pi = .7.  If, on the other hand, the event did not occur, then pi = .30. 

If the observations are independent, the likelihood equation is 
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The likelihood tends to be an incredibly small number, and it is generally easier to work with the 
log likelihood.  Ergo, taking logs, we obtain the log likelihood equation: 
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Before proceeding, let’s see how this works in practice.  Here is how you compute pi and the log 
of pi using Stata: 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. logit grade gpa tuce psi 
 
Iteration 0:   log likelihood =  -20.59173   
Iteration 1:   log likelihood = -13.259768   
Iteration 2:   log likelihood = -12.894606   
Iteration 3:   log likelihood = -12.889639   
Iteration 4:   log likelihood = -12.889633   
Iteration 5:   log likelihood = -12.889633   
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Logistic regression                             Number of obs     =         32 
                                                LR chi2(3)        =      15.40 
                                                Prob > chi2       =     0.0015 
Log likelihood = -12.889633                     Pseudo R2         =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
         psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 
. * Compute probability that y = 1 
. predict prob1 
(option pr assumed; Pr(grade)) 
 
 .* If y = 1, pi = probability y = 1 
. gen pi = prob1 if grade == 1 
(21 missing values generated) 
. * If y = 0, replace pi with probability y = 0 
. replace pi = (1 - prob1) if grade == 0 
(21 real changes made) 
 
. * compute log of pi 
. gen lnpi = ln(pi) 
 
. list  grade  gpa tuce psi prob1 pi lnpi, sep(8) 
 
     +-------------------------------------------------------------+ 
     | grade    gpa   tuce   psi      prob1         pi        lnpi | 
     |-------------------------------------------------------------| 
  1. |     0   2.06     22     1   .0613758   .9386242   -.0633401 | 
  2. |     1   2.39     19     1   .1110308   .1110308   -2.197947 | 
  3. |     0   2.63     20     0   .0244704   .9755296   -.0247748 | 
     |                --- Output Deleted ---                       | 
 30. |     1      4     21     0    .569893    .569893   -.5623066 | 
 31. |     1      4     23     1   .9453403   .9453403   -.0562103 | 
 32. |     1   3.92     29     0   .6935114   .6935114   -.3659876 | 
     +-------------------------------------------------------------+ 
 

So, this tells us that the predicted probability of the first case being 0 was .9386.  The probability 
of the second case being a 1 was .111.  The probability of the 3rd case being a 0 was .9755; and 
so on.  The likelihood is therefore 
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which is a really small number; indeed so small that your computer or calculator may have 
trouble calculating it correctly (and this is only 32 cases; imagine the difficulty if you have 
hundreds of thousands). Much easier to calculate is the log likelihood, which is 
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Stata’s total command makes this calculation easy for us: 
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. total lnpi 
 
Total estimation                    Number of obs    =      32 
 
-------------------------------------------------------------- 
             |      Total   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
        lnpi |  -12.88963   3.127734     -19.26869   -6.510578 
-------------------------------------------------------------- 
 

Note this is the exact same value that logit reported as the log likelihood for the model. We call 
this number LLM, i.e. the log likelihood for the model. If any other set of coefficient estimates 
had been used, the log likelihood would have been different – and not as good. In other words, 
the estimates we got were the most likely values to have produced the observed results. 
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