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Logistic Regression, Part III: 
Hypothesis Testing, Comparisons to OLS 

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ 
Last revised January 17, 2022 

 
This handout steals heavily from Linear probability, logit, and probit models, by John Aldrich and Forrest Nelson, 
paper # 45 in the Sage series on Quantitative Applications in the Social Sciences; and Applied Logistic Regression 
Analysis Second Edition by Scott Menard, paper # 106 in that series. WARNING: As Menard more or less points 
out, notation is wildly inconsistent across authors and programs when it comes to Logistic regression.  I’m trying to 
more or less follow Menard, but you’ll have to learn to adapt to whatever the author or statistical program happens 
to use. 

OVERVIEW.  In this handout, we’ll examine hypothesis testing in logistic regression and make 
comparisons between logistic regression and OLS.  A separate handout provides more detail 
about using Stata. The optional appendices to this handout also provide more details. Appendix 
A shows more logical analogs between logistic regression and OLS regression. Appendix B 
explains what the Log Likelihood is and how it is calculated. Appendix C elaborates further on 
calculating the Model Chi-Square. 

Using the same data as before, here is part of the output we get in Stata when we do a logistic 
regression of Grade on Gpa, Tuce and Psi. 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. logit  grade gpa tuce psi 
 
Iteration 0:   log likelihood =  -20.59173 
Iteration 1:   log likelihood = -13.496795 
Iteration 2:   log likelihood = -12.929188 
Iteration 3:   log likelihood = -12.889941 
Iteration 4:   log likelihood = -12.889633 
Iteration 5:   log likelihood = -12.889633 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
[Rest of output deleted] 
 

GLOBAL TESTS OF PARAMETERS.  In OLS regression, if we wanted to test the hypothesis that all 
β’s = 0 versus the alternative that at least one did not, we used a global F test.  In logistic 
regression, we use a likelihood ratio chi-square test instead.  Stata calls this LR chi2.  The value 
in this case is 15.40.  This is computed by contrasting a model which has no independent 
variables (i.e. has the constant only) with a model that does.  There are three degrees of freedom 
in this case because three coefficients (other than the constant) were estimated, e.g. one for each 
independent variable in the model. You can calculate this using the information from iteration 0 
(the constant only model; we will call the log-likelihood from this model LL0) and the final 
iteration (we’ll call this log-likelihood LLM): 

LR Chi-Square = -2 * (LL0 – LLM) = -2 * (-20.592 + 12.889) = 15.40. 

Another common notation refers to the Deviances of the models. Dev0 = -2 * LL0 and DevM = -2 
* LLM. Think of the deviances as reflecting the extent to which the model fails to perfectly 
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predict the observed outcomes. In this case Dev0 = -2 * -20.59173 = 41.18 and DevM = -2 
* -12.89 = 25.78. So, 

LR Chi-Square = Dev0 – DevM = 41.18 – 25.78 = 15.40. 

If the null hypothesis is true, i.e. if all coefficients (other than the constant) equal 0 then the 
model chi-square statistic has a chi-square distribution with k degrees of freedom (k = number 
coefficients estimated other than the constant). In this case the model chi-square is highly 
significant suggesting that at least one variable has an effect that differs from 0. 

Common notations for the model chi-square include Model χ2, L2, GM. 

INCREMENTAL TESTS / LIKELIHOOD RATIO CHI-SQUARE TESTS.  There is also an analog to the 
incremental F test.  Just like with OLS, we can compare constrained and unconstrained models, 
i.e. nested models. For example, we might be interested in contrasting a model with X1, X2, and 
X3, with a model that has the same three variables plus X4 & X5. We refer to the first model as 
the constrained model because, by not including X4 and X5, we in effect constrain their effects 
to equal 0. For example, X1, X2, and X3 might be demographic variables, and we might want to 
see whether attitudinal measures X4 and X5 tell us anything more than the demographic 
variables do.  

In logistic regression we use an incremental chi-square square statistic instead of an incremental 
F statistic.  (More commonly, you see phrases like chi-square contrasts.) The difference between 
the deviances of constrained and unconstrained models has a chi-square distribution with degrees 
of freedom equal to the number of constraints. The simplest formula is 

L2 = Model L2 Unconstrained – Model L2 Constrained, d.f. = number of constraints 

The notation L2 is used to signify that this is a Likelihood Ratio Chi Square test (as opposed to, 
say, a Pearson Chi-Square test, which has less desirable properties).  Again, notation is wildly 
inconsistent across authors.  G2 is another notation sometime used. 

In Stata, we can get incremental and global LR chi-square tests easily by using the estimates 
store and lrtest command. In the following the quietly option suppresses a lot of the 
intermediate information, but don’t use it if you want to see those results. 

. quietly logit  grade gpa 

. est store m1 

. quietly logit  grade gpa tuce 

. est store m2 

. quietly logit  grade gpa tuce psi 

. est store m3 

. lrtest m1 m2 
 
Likelihood-ratio test                                  LR chi2(1)  =      0.43 
(Assumption: m1 nested in m2)                          Prob > chi2 =    0.5096 
 
. lrtest m2 m3 
 
Likelihood-ratio test                                  LR chi2(1)  =      6.20 
(Assumption: m2 nested in m3)                          Prob > chi2 =    0.0127 
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TESTS OF INDIVIDUAL PARAMETERS.  Testing whether any individual parameter equals zero 
proceeds pretty much the same way as in OLS regression. You can, if you want, do an 
incremental LR chi-square test.  That, in fact, is the best way to do it, since the Wald test referred 
to next is biased under certain situations. For individual coefficients, Stata reports z values, 
which is b/sb. 

. logit  grade gpa tuce psi, nolog 
 
Logistic regression                               Number of obs   =         32 
                                                  LR chi2(3)      =      15.40 
                                                  Prob > chi2     =     0.0015 
Log likelihood = -12.889633                       Pseudo R2       =     0.3740 
 
------------------------------------------------------------------------------ 
       grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432 
        tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988 
         psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195 
       _cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613 
------------------------------------------------------------------------------ 
 

With Stata, you can also continue to use the test command.  The test command does Wald 
tests, which aren’t as good as LR tests but which may be adequate in large samples, e.g. 
 
. * Test whether effects of gpa and tuce are both 0 
. test gpa tuce 
 
 ( 1)  gpa = 0 
 ( 2)  tuce = 0 
 
           chi2(  2) =    6.35 
         Prob > chi2 =    0.0418 
 
. * Test whether effects of gpa and psi are equal 
. test gpa = psi 
 
 ( 1)  gpa - psi = 0 
 
           chi2(  1) =    0.11 
         Prob > chi2 =    0.7437 

 
 

R2 ANALOGS.    As Menard points out in Applied Logistic Regression Analysis, Second Edition, 
several people have tried to come up with the equivalent of an R2 measure for logistic regression.  
No one of these measures seems to have achieved widespread acceptance yet.  One of the 
simplest and most popular formulas is McFadden’s Pseudo R2: 
 

Pseudo R2 = Model L2/ DEV0 = 1 – DEVM/DEV0 = 1 – LLM/LL0 
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This statistic will equal zero if all coefficients are zero.  It will come close to 1 if the model is 
very good.  In the present case, for the model with gpa, psi and tuce included, 
 

Pseudo R2 = Model L2/ DEV0 = 15.404/41.183 = .374 
 

OTHER WAYS OF ASSESSING “GOODNESS OF FIT.”    There are other ways to assess whether or 
not the model fits the data.  For example, there is the classification table. The command in Stata 
is estat class (you can also just use lstat) 

. quietly logit  grade gpa tuce psi 

. estat class 
 
Logistic model for grade 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |         8             3  |         11 
     -     |         3            18  |         21 
-----------+--------------------------+----------- 
   Total   |        11            21  |         32 
 
Classified + if predicted Pr(D) >= .5 
True D defined as grade != 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   72.73% 
Specificity                     Pr( -|~D)   85.71% 
Positive predictive value       Pr( D| +)   72.73% 
Negative predictive value       Pr(~D| -)   85.71% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)   14.29% 
False - rate for true D         Pr( -| D)   27.27% 
False + rate for classified +   Pr(~D| +)   27.27% 
False - rate for classified -   Pr( D| -)   14.29% 
-------------------------------------------------- 
Correctly classified                        81.25% 
--------------------------------------------------  

In the classification table, cases with probabilities ≥ .50 are predicted as having the event, other 
cases are predicted as not having the event.  Ideally, you would like to see the two groups have 
very different estimated probabilities.  In this case, of the 21 people who did not get A’s, the 
model correctly predicted 18 would not but said that 3 would.   Similarly, of the 11 who got A’s, 
the model was right on 8 of them. 

In this case, if you had no useful information about people, the smartest strategy would be to 
guess that nobody got an A – and you would be right for 21 of the 32 cases, or 65.625% of the 
time. (In other words, if you have to make a wild guess, guess that everyone will have the value 
of the category with the highest frequency on the dependent variable.) Using the logistic 
regression model, however, 81.25% of the cases, or 26 of the 32, are correctly classified. Thus, 
thanks to the model, 5 additional cases are classified correctly. If the classification table 
classifies more cases correctly than just guessing that every case falls into the category with the 
highest frequency, then the table has provided something of value. 
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The classification table has limits though. From the classification table, you can’t tell how great 
the errors are.  The 6 misclassified cases may have been within one or two percentage points of 
being classified correctly, or they may have been way off.  For “rare” events, e.g. when only 
10% of the sample has a value of 1 on the dependent variable, the table may not be at all useful, 
because every case can get classified as NOT experiencing the event.  A 30% predicted 
probability for a case may be relatively high, but still not high enough to get the case classified 
as a 1. Menard goes on at some length about other possible classification/prediction strategies. 

The handout on Measures of Fit discusses several other measures that may be useful at times. 
For example, the Adjusted Count R^2 may be a useful supplement to the Classification Table, 
because it helps to quantify exactly how much the classification of cases has been improved 
because of the model.  

DIAGNOSTICS.  It can also be useful to run various diagnostics.  These help to indicate areas or 
cases for which the model is not working well.  Menard lists several statistics for looking at 
residuals.  Menard also briefly discusses some graphical techniques that can be useful.  Also see 
Hamilton’s Statistics with Stata for some ideas. 

In Stata, you can again use the predict command to compute various outliers. As was the case 
with OLS, Stata tends to use different names than SPSS and does some computations differently. 
Cases 2 and 27 seem to be the most problematic. 

. * Generate standardized residuals  

. predict p 
(option pr assumed; Pr(grade)) 
. predict rstandard, rstandard 
. extremes rstandard p grade gpa tuce psi 
 
  +---------------------------------------------------------+ 
  | obs:   rstandard          p   grade    gpa   tuce   psi | 
  |---------------------------------------------------------| 
  |  27.   -2.541286   .8520909       0   3.51     26     1 | 
  |  18.   -1.270176   .5898724       0   3.12     23     1 | 
  |  16.   -1.128117   .5291171       0    3.1     21     1 | 
  |  28.    -.817158   .3609899       0   3.53     26     0 | 
  |  24.   -.7397601   .3222395       0   3.57     23     0 | 
  +---------------------------------------------------------+ 
 
  +--------------------------------------------------------+ 
  |  19.   .8948758   .6354207       1   3.39     17     1 | 
  |  30.   1.060433    .569893       1      4     21     0 | 
  |  15.   1.222325    .481133       1   2.83     27     1 | 
  |  23.   2.154218   .1932112       1   3.26     25     0 | 
  |   2.   3.033444   .1110308       1   2.39     19     1 | 
  +--------------------------------------------------------+ 
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Appendix A (Optional): More Comparisons with OLS 

There are many similarities between OLS and Logistic Regression, and some important 
differences.  I’ll try to highlight the most crucial points here. 

OLS and its extensions Logistic Regression 

Estimated via least squares Estimated via Maximum Likelihood. 

Y is continuous, can take on any value Y can only take on 2 values, typically 0 and 1 

X’s are continuous vars.  Categorical variables are 
divided up into dummy variables 

Same as OLS 

X’s are linearly related to Y; in the case of the 
LPM, X’s are linearly related to P(Y=1) 

X’s are linearly related to log odds of event 
occurring.  Log odds, in turn, are nonlinearly 
related to P(Y = 1). 

Y’s are statistically independent of each other, e.g., 
don’t have serial correlation, don’t include 
husbands and their wives as separate cases 

Same as OLS 

Robust standard errors can be used when error 
terms are not independent and identically 
distributed. 

Same as OLS.  Stata makes this easy (just add a 
robust parameter), SPSS does not. 

There can be no perfect multicollinearity among 
the X’s.  High levels of multicollinearity can result 
in unstable sample estimates and large standard 
errors 

Same as OLS.  Techniques for detecting 
multicollinearity are also similar.  In fact, as 
Menard points out, you could just run the 
corresponding OLS regression, and then look at the 
correlations of the IVs, the tolerances, variance 
inflation factors, etc. Or, use Stata’s collin 
command. 

Missing data can be dealt with via listwise deletion, 
pairwise deletion, mean substitution, multiple 
imputation 

Pairwise deletion isn’t an option.  Can’t do “mean 
substitution” on the DV.  Otherwise, can use 
techniques similar to those that we’ve described for 
OLS. 

Global F test is used to test whether any IV effects 
differ from 0.  d.f. = K, N-K-1 

Model chi-square statistic (also known as Model L2 
or G2 or GM) is used for same purpose.  D.F. = 
number of IVs in the model = K. 

Incremental F test is used to test hypotheses 
concerning whether subset of coefficients = 0.  If 
you specify variables in blocks, the F change 
statistic will give you the info you need. 

LR Chi-square statistic is used.    

DEVConstrained - DEVUnconstrained 

Model L2 Unconstrained – Model L2 Constrained 
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T test or incremental F test is used to test whether 
an individual coefficient = 0 

Can use a LR chi square test (preferable) or Wald 
statistic (probably usually ok, but not always). 

Incremental F tests or T tests can be used to test 
equalities of coefficients within a model, equalities 
across populations, interaction effects. 

Same basic procedures, substituting LR chi square 
tests for F tests. 

Wald tests (as produced by the test command in 
stata) will produce the same results as incremental 
F tests.  A nice thing about Wald tests is that they 
only require the estimation of the unconstrained 
model. 

Wald tests can be performed, but they will 
generally NOT produce exactly the same results as 
LR tests.  LR tests (which require the estimation of 
constrained and unconstrained models) are 
preferable, although in practice results will often be 
similar. 

Can have interaction effects.  Centering can 
sometimes make main effects easier to interpret.  If 
you center the continuous vars, then the main effect 
of an IV like race is equal to the difference in the 
predicted values for an “average” Black person and 
an “average” White person. 

NOT quite the same as OLS.  You can use 
interaction terms, but there are potential problems 
you should be aware of when interpreting results.  
See Allison (1999) or Williams (2009, 2010) for 
discussions.  If you center, then the main effect of 
an IV like race is equal to the difference in the log 
odds for an “average” Black person and an 
“average” White person. 

Can do transformations of the IVs and DV to deal 
with nonlinear relationships, e.g. X2, ln(X), ln(Y). 

Same as OLS for the IVs, but you of course can’t 
do transformations of the dichotomous DV. 

Can plot Y against X, examine residuals, plot X 
against residuals, to identify possible problems 
with the model 

Similar to OLS.  Can examine residuals. 

Can do mindless, atheoretical stepwise regression Similar to OLS 

R2 tells how much of total variance is “explained”.   Numerous Pseudo R2 stats have been proposed.  If 
you use one, make clear which one it is. 

Can look at standardized betas. There is actually a reasonable case for using 
standardized coefficients in logistic regression.  
Long & Freese’s spost13 routines include the 
listcoef command, which can do various types 
of standardization. 

Can do path analysis.  Can decompose association.  
Can estimate recursive and nonrecursive models.  
Programs like LISREL and MPlus and Stata’s sem 
command can deal with measurement error. 

There is work going on in this area. Stata has the 
gsem and user-written gllamm commands. If you 
can afford it, probably the best program is MPlus. 
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OLS VERSUS LOGISTIC REGRESSION FOR HYPOTHESIS TESTING. There are a number of logical 
analogs between OLS and Logistic regression for hypothesis testing, i.e. the math is different but 
the functions served are similar.   

OLS Regression Logical Analog in Logistic Regression 

Total Sums of Squares -2LL0, DEV0, D0 

Error/ Residual Sums of Squares -2LLM, DEVM, DM 

Regression/Explained Sums of Squares Model Chi Square, L2, GM 

Global F Model Chi Square, L2, GM 

Incremental F Test Chi-Square Contrast/ Incremental chi-square 
contrast 

Incremental F Test and Wald test of the same 
hypotheses give identical results 

Chi-square contrast between models and a 
Wald test of the same hypotheses generally 
do NOT give exactly identical results. 
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Appendix B (Optional): Computing the log likelihood. 

This is adapted from J. Scott Long’s Regression Models for Categorical and Limited Dependent 
Variables. 

Define pi as the probability of observing whatever value of y was actually observed for a given 
observation, i.e. 
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If the observations are independent, the likelihood equation is 
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The likelihood tends to be an incredibly small number, and it is generally easier to work with the 
log likelihood.  Ergo, taking logs, we obtain the log likelihood equation: 

∑
=
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1
ln)(ln Xy,|β  

Before proceeding, let’s see how this works in practice!  Here is how you compute pi and the log 
of pi using Stata: 

. use https://www3.nd.edu/~rwilliam/statafiles/logist.dta, clear 

. quietly  logit grade gpa tuce psi 

. * Compute probability that y = 1 

. predict pi  
(option p assumed; Pr(grade)) 
. * If y = 0, replace pi with probability y = 0 
. replace pi = 1 - pi if grade == 0 
(21 real changes made) 
. * compute log of pi 
. gen lnpi = ln(pi) 
 
. list  grade pi lnpi, sep(8) 
 
     +------------------------------+ 
     | grade         pi        lnpi | 
     |------------------------------| 
  1. |     0   .9386242   -.0633401 | 
  2. |     1   .1110308   -2.197947 | 
  3. |     0   .9755296   -.0247748 | 
     |     --- Output deleted ---   | 
 30. |     1    .569893   -.5623066 | 
 31. |     1   .9453403   -.0562103 | 
 32. |     1   .6935114   -.3659876 | 
     +------------------------------+ 
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So, this tells us that the predicted probability of the first case being 0 was .9386.  The probability 
of the second case being a 1 was .111.  The probability of the 3rd case being a 0 was .9755; and 
so on.  The likelihood is therefore 

252400000.6935.*...*9755.*1110.*9386.)(
1

===∏
=

N

i
ipL Xy,|β  

which is a really small number; indeed so small that your computer or calculator may have 
trouble calculating it correctly (and this is only 32 cases; imagine the difficulty if you have 
hundreds of thousands). Much easier to calculate is the log likelihood, which is 

88963.12366....198.20633.ln)(ln
1

−=−++−+−==∑
=

N

i
ipL Xy,|β  

Stata’s total command makes this calculation easy for us: 

. total lnpi 
 
Total estimation                    Number of obs    =      32 
 
-------------------------------------------------------------- 
             |      Total   Std. Err.     [95% Conf. Interval] 
-------------+------------------------------------------------ 
        lnpi |  -12.88963   3.127734     -19.26869   -6.510578 
-------------------------------------------------------------- 

 

If we do the same thing with the constant-only model the value is -20.59173 (which is what Stata 
reported as the LL for iteration 0). As reported in the main handout, LL0 and LLM can be used to 
compute the Model Chi-square as well as other statistics of interest. 

Note: The maximum likelihood estimates are those values of the parameters that make the 
observed data most likely.  That is, the maximum likelihood estimates will be those values which 
produce the largest value for the likelihood equation (i.e. get it as close to 1 as possible; which is 
equivalent to getting the log likelihood equation as close to 0 as possible). 
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Appendix C (Optional): Calculating the Model Chi-Square 

The probability of the observed results given the parameter estimates is known as the likelihood.  
Since the likelihood is a small number less than 1, it is customary to use -2 times the log of the 
likelihood.  -2LL is a measure of how well the estimated model fits the likelihood.  A good 
model is one that results in a high likelihood of the observed results.  This translates to a small 
number for -2LL (If a model fits perfectly, the likelihood is 1, and -2 times the log likelihood is 
0).   

-2LL is also called the Deviance, DEV, or simply D.  Subscripts are often used to denote which model this particular 
deviance applies to. The smaller the deviance is, the better the model fits the data. 

The “initial log likelihood function” is for a model in which only the constant is included.  This 
is used as the baseline against which models with IVs are assessed.  Stata reports LL0, -20.59173, 
which is the log likelihood for iteration 0. -2LL0 = -2* -20.59173 = 41.18. 
 
-2LL0, DEV0, or simply D0 are alternative ways of referring to the deviance for a model which has only the 
intercept.  This is analogous to the Total Sums of Squares, SST, in OLS Regression.   

 
When GPA, PSI, and TUCE are in the model, -2LLM = -2 * -12.889633 = 25.78.  We can refer to 
this as DEVM or simply DM.   

The -2LL for a model, or DEVM, indicates the extent to which the model fails to perfectly predict the values of the 
DV, i.e. it tells how much improvement is needed before the predictors provide the best possible prediction of the 
dependent variable. DEVM is analogous to the Error Sums of Squares, SSE, in OLS regression. 

The addition of these 3 parameters reduces -2LL by 15.40, i.e.  
DEV0 - DEVM = 41.183 – 25.779 = 15.40.  This is reflected in the Model Chi-square,  which 
Stata labels as LR chi2. 

The Model Chi-Square, also called Model L2 or GM, is analogous to the Regression (explained) Sums of Squares, 
SSR, in OLS regression.  It is also the direct counterpart to the Global F Test in regression analysis.  A significant 
value tells you that one or more betas differ from zero, but it doesn’t tell you which ones. 

GM = L2 = DEV0 - DEVM 

The significance level for the model chi-square indicates that this is a very large drop in chi-
square, ergo we reject the null hypothesis.  The effect of at least one of the IVs likely differs 
from zero.   

You can think of the Deviance as telling you how bad the model still is, while the Model L2 , aka GM tells you how 
good it is.  
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