Overview. Marginal effects are computed differently for discrete (i.e. categorical) and continuous variables. This handout will explain the difference between the two.

With binary independent variables, marginal effects measure *discrete change*, i.e. how do predicted probabilities change as the binary independent variable changes from 0 to 1?

Marginal effects for continuous variables measure the *instantaneous rate of change* (defined shortly). They are popular in some disciplines (e.g. Economics) because they often provide a good approximation to the amount of change in Y that will be produced by a 1-unit change in X_k. But then again, they often do not.

Example. We will show Marginal Effects at the Means (MEMS) for both the discrete and continuous independent variables in the following example.

```
. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta, clear
. logit grade gpa tuce i.psi, nolog
Logistic regression                               Number of obs   =         32
LR chi2(3)      =      15.40
Prob > chi2     =     0.0015
Log likelihood = -12.889633                       Pseudo R2       =     0.3740
------------------------------------------------------------------------------
grade |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
gpa |   2.826113   1.262941     2.24   0.025     .3507938    5.301432
tuce |   .0951577   .1415542     0.67   0.501    -.1822835    .3725988
1.psi |   2.378688   1.064564     2.23   0.025       .29218    4.465195
_cons |  -13.02135   4.931325    -2.64   0.008    -22.68657    -3.35613
------------------------------------------------------------------------------
. margins, dydx(*) atmeans
Conditional marginal effects                      Number of obs   =         32
Model VCE    : OIM
Expression   : Pr(grade), predict()
dy/dx w.r.t. : gpa tuce 1.psi
at           : gpa             =    3.117188 (mean)
tuce            =     21.9375 (mean)
0.psi           =       .5625 (mean)
1.psi           =       .4375 (mean)
------------------------------------------------------------------------------
|    Delta-method
|            dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
gpa |     .533859    .237038     2.25   0.024      .069273    .9984447
tuce |     .017935    .0262369    0.69   0.493    -.0334479    .0693989
1.psi |     .4564984  .1810537     2.52   0.012     -.0163976   .8213871
------------------------------------------------------------------------------
Note: dy/dx for factor levels is the discrete change from the base level
```
Discrete Change for Categorical Variables. Categorical variables, such as psi, can only take on two values, 0 and 1. It wouldn’t make much sense to compute how \(P(Y=1) \) would change if, say, psi changed from 0 to .6, because that cannot happen. The MEM for categorical variables therefore shows how \(P(Y=1) \) changes as the categorical variable changes from 0 to 1, holding all other variables at their means. That is, for a categorical variable \(X_k \)

\[
\text{Marginal Effect } X_k = \Pr(Y = 1|X, X_k = 1) – \Pr(y=1|X, X_k = 0)
\]

In the current case, the MEM for psi of .456 tells us that, for two hypothetical individuals with average values on gpa (3.12) and tuce (21.94), the predicted probability of success is .456 greater for the individual in psi than for one who is in a traditional classroom. To confirm, we can easily compute the predicted probabilities for those hypothetical individuals, and then compute the difference between the two.

```
. margins psi, atmeans
```

```
Adjusted predictions                        Number of obs   =        32
Model VCE    : OIM
Expression   : Pr(grade), predict()
at           : gpa             =    3.117188 (mean)
              : tuce            =     21.9375 (mean)
              : 0.psi           =       .5625 (mean)
              : 1.psi           =       .4375 (mean)
------------------------------------------------------------------------------
|            Delta-method
|     Margin   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
psi |       .1067571   .0800945     1.33   0.183    -.0502252    .2637393
    |       .5632555   .1632966     3.45   0.001     .2432001    .8833109
------------------------------------------------------------------------------
```

```
. display .5632555 - .1067571
.4564984
```

For categorical variables with more than two possible values, e.g. religion, the marginal effects show you the difference in the predicted probabilities for cases in one category relative to the reference category. So, for example, if relig was coded 1 = Catholic, 2 = Protestant, 3 = Jewish, 4 = other, the marginal effect for Protestant would show you how much more (or less) likely Protestants were to succeed than were Catholics, the marginal effect for Jewish would show you how much more (or less) likely Jews were to succeed than were Catholics, etc.

Keep in mind that these are the marginal effects when all other variables equal their means (hence the term MEMs); the marginal effects will differ at other values of the Xs.

Instantaneous rates of change for continuous variables. What does the MEM for gpa of .534 mean? It would be nice if we could say that a one unit increase in gpa will produce a .534 increase in the probability of success for an otherwise “average” individual. Sometimes statements like that will be (almost) true, but other times they will not. For example, if an
“average” individual (average meaning gpa = 3.12, tuce = 21.94, psi = .4375) saw a one point increase in their gpa, here is how their predicted probability of success would change:

```
. margins, at(gpa = (3.117188 4.117188)) atmeans
```

| | | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|-----------|------|-------------|----------------------|
| _at | | | | | |
| 1 | .2528205 | .1052961 | 2.40 | 0.016 | .046444 .459197 |
| 2 | .2533547 | .1053672 | 2.40 | 0.016 | .0468388 .4598706 |

Note that (a) the predicted increase of .598 is actually more than the MEM for gpa of .534, and (b) in reality, gpa couldn’t go up 1 point for a person with an average gpa of 3.117.

MEMs for continuous variables measure the instantaneous rate of change, which may or may not be close to the effect on \(P(Y=1)\) of a one unit increase in \(X_k\). The appendices explain the concept in detail. What the MEM more or less tells you is that, if, say, \(X_k\) increased by some very small amount (e.g. .001), then \(P(Y=1)\) would increase by about .001*.534 = .000534, e.g.

```
. margins, at(gpa = (3.117188 3.118188)) atmeans noatlegend
```

| | | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------|-----------|-----------|------|-------------|----------------------|
| _at | | | | | |
| 1 | .2528205 | .1052961 | 2.40 | 0.016 | .046444 .459197 |
| 2 | .2533547 | .1053672 | 2.40 | 0.016 | .0468388 .4598706 |

Note that (a) the predicted increase of .598 is actually more than the MEM for gpa of .534, and (b) in reality, gpa couldn’t go up 1 point for a person with an average gpa of 3.117.
Put another way, for a continuous variable \(X_k \),

\[
\text{Marginal Effect of } X_k = \lim_{\Delta \to 0} \frac{\Pr(Y = 1|X, X_k + \Delta) - \Pr(y=1|X, X_k)}{\Delta}
\]

The appendices show how to get an exact solution for this.

There is no guarantee that a bigger increase in \(X_k \), e.g. 1, would produce an increase of 1*0.534=0.534. This is because the relationship between \(X_k \) and \(P(Y = 1) \) is nonlinear. When \(X_k \) is measured in small units, e.g. income in dollars, the effect of a 1 unit increase in \(X_k \) may match up well with the MEM for \(X_k \). But, when \(X_k \) is measured in larger units (e.g. income in millions of dollars) the MEM may or may not provide a very good approximation of the effect of a one unit increase in \(X_k \). That is probably one reason why instantaneous rates of change for continuous variables receive relatively little attention, at least in Sociology. More common are approaches which focus on discrete changes, which we will discuss later.

Conclusion. Marginal effects can be an informative means for summarizing how change in a response is related to change in a covariate. For categorical variables, the effects of discrete changes are computed, i.e., the marginal effects for categorical variables show how \(P(Y = 1) \) is predicted to change as \(X_k \) changes from 0 to 1 holding all other Xs equal. This can be quite useful, informative, and easy to understand.

For continuous independent variables, the marginal effect measures the instantaneous rate of change. If the instantaneous rate of change is similar to the change in \(P(Y=1) \) as \(X_k \) increases by one, this too can be quite useful and intuitive. However, there is no guarantee that this will be the case; it will depend, in part, on how \(X_k \) is scaled.

Subsequent handouts will show how the analysis of discrete changes in continuous variables can make their effects more intelligible.
Appendix A: AMEs for continuous variables, computed manually

Calculus can be used to compute marginal effects, but Cameron and Trivedi (Microeconometrics using Stata, Revised Edition, 2010, section 10.6.10, pp. 352 – 354) show that they can also be computed manually. The procedure is as follows:

Compute the predicted values using the observed values of the variables. We will call this prediction1.

Change one of the continuous independent variables by a very small amount. Cameron and Trivedi suggest using the standard deviation of the variable divided by 1000. We will refer to this as delta (Δ).

Compute the new predicted values for each case. Call this prediction2.

For each case, compute

\[x_{me} = \frac{\text{prediction2} - \text{prediction1}}{\Delta} \]

Compute the mean value of xme. This is the AME for the variable in question.

Here is an example:

```
. * Appendix A: Compute AMEs manually
. webuse nhanes2f, clear
. * For convenience, keep only nonmissing cases
. keep if !missing(diabetes, female, age)
(2 observations deleted)
. clonevar xage = age
. sum xage
  Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
     xage |     10335    47.56584    17.21752         20         74
. gen xdelta = r(sd)/1000
. logit diabetes i.female xage, nolog
Logistic regression                               Number of obs   =      10335
LR chi2(2)      =     345.87
Prob > chi2     =     0.0000
Log likelihood = -1826.1338                       Pseudo R2       =     0.0865
------------------------------------------------------------------------------
  diabetes |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
   1.female |   .1549701   .0940619     1.65   0.099    -.0293878    .3393279
     xage |   .0588637   .0037282    15.79   0.000     .0515567    .0661708
       _cons |  -6.276732   .2349508   -26.72   0.000    -6.737227   -5.816237
------------------------------------------------------------------------------
```
. margins, dydx(xage)

Average marginal effects
Number of obs = 10335
Model VCE : OIM
Expression : Pr(diabetes), predict()
dy/dx w.r.t. : xage

<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
<td>z</td>
</tr>
<tr>
<td>xage</td>
<td>.0026152</td>
<td>.000188</td>
<td>13.91</td>
<td>0.000</td>
<td>.0022468</td>
</tr>
</tbody>
</table>

. predict xage1
(option pr assumed; Pr(diabetes))

. replace xage = xage + xdelta
xage was byte now float
(10335 real changes made)

. predict xage2
(option pr assumed; Pr(diabetes))

. gen xme = (xage2 - xage1) / xdelta

. sum xme

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>xme</td>
<td>10335</td>
<td>.0026163</td>
<td>.0020192</td>
<td>.0003549</td>
<td>.0073454</td>
</tr>
</tbody>
</table>

end of do-file
Appendix B: Technical Discussion of Marginal Effects (Optional)

In binary regression models, the marginal effect is the slope of the probability curve relating X_k to $\Pr(Y=1|X)$, holding all other variables constant. But what is the slope of a curve??? A little calculus review will help make this clearer.

Simple Explanation. Draw a graph of $F(X_k)$ against X_k, holding all the other X’s constant (e.g. at their means). Chose 2 points, $[X_k, F(X_k)]$ and $[X_k + \Delta, F(X_k + \Delta)]$. When Δ is very very small, the slope of the line connecting the two points will equal or almost equal the marginal effect of X_k.

More Detailed Explanation. Again, what is the slope of a curve? Intuitively, think of it this way. Draw a graph of $F(X)$ against X, e.g. $F(X) = X^2$. Chose specific values of X and $F(X)$, e.g. $[2, F(2)]$. Choose another point, e.g. $[8, F(8)]$. Draw a line connecting the points. This line has a slope. The slope is the *average rate of change*.

Now, choose another point that is closer to $[2, F(2)]$, e.g. $[7, F(7)]$. Draw a line connecting these points. This too will have a slope. Keep on choosing points that are closer to $[2, F(2)]$. The *instantaneous rate of change* is the limit of the slopes for the lines connecting $[X, F(X)]$ and $[X+\Delta, F(X + \Delta)]$ as Δ gets closer and closer to 0.

[Graph of a curve with points and tangent lines illustrating the concept of slopes]

Source: <http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/slope.html>

Last accessed January 20, 2018

See the above link for more information

Calculus is used to compute slopes (& marginal effects). For example, if $Y = X^2$, then the slope is $2X$. Hence, if $X = 2$, the slope is 4. The following table illustrates this. Note that, as Δ gets smaller and smaller, the slope gets closer and closer to 4.
\[F(X) = X^2 \quad X = 2 \quad F(2) = 4 \]

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(X + \delta)</th>
<th>(F(X + \delta))</th>
<th>Change in (F(X))</th>
<th>Change in (X)</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>102</td>
<td>10404</td>
<td>10400</td>
<td>100</td>
<td>104</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>144</td>
<td>140</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0.1</td>
<td>2.1</td>
<td>4.41</td>
<td>0.41</td>
<td>0.1</td>
<td>4.1</td>
</tr>
<tr>
<td>0.01</td>
<td>2.01</td>
<td>4.0401</td>
<td>0.0401</td>
<td>0.01</td>
<td>4.01</td>
</tr>
<tr>
<td>0.001</td>
<td>2.001</td>
<td>4.004001</td>
<td>0.004001</td>
<td>0.001</td>
<td>4.001</td>
</tr>
<tr>
<td>0.0001</td>
<td>2.0001</td>
<td>4.00040001</td>
<td>0.00040001</td>
<td>0.0001</td>
<td>4.0001</td>
</tr>
</tbody>
</table>

Marginal effects are also called instantaneous rates of change; you compute them for a variable while all other variables are held constant. The magnitude of the marginal effect depends on the values of the other variables and their coefficients. The Marginal Effect at the Mean (MEM) is popular (i.e., compute the marginal effects when all x’s are at their mean) but many think that Average Marginal Effects (AMEs) are superior.

Logistic Regression. Again, calculus is used to compute the marginal effects. In the case of logistic regression, \(F(X) = P(Y=1|X) \), and

Marginal Effect for \(X_k = P(Y=1 \mid X) \times P(Y=0 \mid X) \times b_k \).

Returning to our earlier example,

```stata
. use "https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta", clear
. logit grade gpa tuce psi, nolog
```

Logistic regression Number of obs = 32
LR chi2(3) = 15.40
Prob > chi2 = 0.0015
Log likelihood = -12.889633 Pseudo R2 = 0.3740

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|------------|----------|-----------|------|------|----------------------|
| grade | | | | | |
| gpa | 2.826113 | 1.262941 | 2.24 | 0.025| .3507938 -5.301432 |
| tuce | 0.0951577| 0.1415542 | 0.67 | 0.501| -0.1822835 0.3725988 |
| psi | 2.378688 | 1.064564 | 2.23 | 0.025| -0.29218 4.651955 |
| _cons | -13.02135| 4.931325 | -2.64| 0.008| -22.68657 -3.35613 |

```

```stata
. adjust gpa tuce psi, pr
```

Dependent variable: grade Equation: grade Command: logit Covariates set to mean: gpa = 3.1171875, tuce = 21.9375, psi = 0.4375

```

<table>
<thead>
<tr>
<th>Pr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>.25282</td>
<td></td>
</tr>
</tbody>
</table>
```

Key: pr = Probability
### Marginal Effects for Continuous Variables

Marginal effects after logit

\[ y = \text{Pr(grade)} \ (\text{predict}) \]

\[ = .25282025 \]

| variable | \( \frac{dy}{dx} \) | Std. Err. | z | P>|z| | \[ 95\% \text{ C.I.} \] | \( X \) |
|----------|-----------------|-----------|---|--------|-----------------|------|
| gpa      | .5338589        | .23704    | 2.25 | 0.024  | .069273 - .998445 | 3.11719 |
| tuce     | .0179755        | .02624    | 0.69 | 0.493  | -.033448 - .069399 | 21.9375 |
| psi*     | .4564984        | .18105    | 2.52 | 0.012  | .10164 - .811357 | .4375 |

(*) \( \frac{dy}{dx} \) is for discrete change of dummy variable from 0 to 1

Looking specifically at GPA – when all variables are at their means, \( \text{Pr}(Y=1|X) = .2528 \), \( \text{Pr}(Y=0|X) = .7472 \), and \( b_{\text{GPA}} = 2.826113 \). The marginal effect at the mean for GPA is therefore

\[
\text{Marginal Effect of GPA} = \text{P}(Y=1 |X) \ast \text{P}(Y = 0|X) \ast b_{\text{GPA}} = .2528 \ast .7472 \ast 2.826113 = .5339
\]

The following table again shows you that, in logistic regression, as the distance between two points gets smaller and smaller, i.e. as \( \Delta \) gets closer and closer to 0, the slope of the line connecting the points gets closer and closer to the marginal effect.

<table>
<thead>
<tr>
<th>( \Delta )</th>
<th>GPA+( \delta )</th>
<th>F(X,GPA+( \delta ))</th>
<th>Change in F(X,GPA)</th>
<th>Change in GPA</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13.11719</td>
<td>.747179749</td>
<td>0.0747179749</td>
<td>0.00747179749</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.11719</td>
<td>.598182307</td>
<td>0.0598182307</td>
<td>0.00598182307</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>3.21719</td>
<td>.056988042</td>
<td>0.0056988042</td>
<td>0.000569880426</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>3.16719</td>
<td>.027611428</td>
<td>0.0027611428</td>
<td>0.00027611428</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>3.12719</td>
<td>0.05375787</td>
<td>0.005375787</td>
<td>0.000537578743</td>
<td></td>
</tr>
<tr>
<td>0.001</td>
<td>3.11819</td>
<td>0.5342350788</td>
<td>0.000534235</td>
<td>0.00005342350788</td>
<td></td>
</tr>
<tr>
<td>0.0001</td>
<td>3.11729</td>
<td>0.5339297264</td>
<td>0.000533929</td>
<td>0.00005339297264</td>
<td></td>
</tr>
</tbody>
</table>

Probit. In probit, the marginal effect is

\[
\text{Marginal Effect for } X_k = \Phi(XB) \ast b_k
\]

where \( \Phi \) is the probability density function for a standardized normal variable. For example, as this diagram shows, \( \Phi(0) = .399 \):
Example:

```stata
use https://www3.nd.edu/~rwilliam statafiles/glm-logit.dta, clear
probit grade gpa tuce psi, nolog
```

Probit estimates

| Coef. | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|-------|-----------|------|-----|---------------------|
| gpa   | 1.62581   | .6938818 | 2.34 | 0.019 | .2658269 - 2.985794 |
| tuce  | .0517289  | .0838901 | 0.62 | 0.537 | -.1126927 - 0.2161506 |
| psi   | 1.426332  | .595037 | 2.40 | 0.017 | .2600814 - 2.592583 |
| _cons | -7.45232  | 2.542467 | -2.93 | 0.003 | -12.43546 - 2.469177 |

```

. mfx
Marginal effects after probit
```

| dy/dx | Std. Err. | z    | P>|z| | [95% C.I. ] | X |
|-------|-----------|------|-----|-----------|---|
| gpa   | .5333471  | .23246 | 2.29 | 0.022 | .988968 - 3.11719 |
| tuce  | .0169697  | .02712 | 0.63 | 0.531 | -.036184 - .070123 |
| psi   | .464426   | .17028 | 2.73 | 0.006 | .130682 - .79817 |

(*) dy/dx is for discrete change of dummy variable from 0 to 1

*. marginal change for GPA. The invnorm function gives us the Z-score for the stated prob of success. The normalden function gives us the pdf value for that Z-score.
```
invnorm(.2658)
```

```
display normalden(invnorm(.2658))
```

```
display normalden(invnorm(.2658)) * 1.62581
```

```
Marginal Effect for GPA = Φ(XB) * b_k = .32804496 * 1.62581 = .5333
```

The following table again shows you that, in a probit model, as the distance between two points gets smaller and smaller, i.e. as Δ gets closer and closer to 0, the slope of the line connecting the points gets closer and closer to the marginal effect.
Probit

\[ F(X,GPA) = P(Y=1|X, GPA) \]

GPA = 3.11719 Other X's at Mean \[ F(X,3.11719) = .26580811 \]

<table>
<thead>
<tr>
<th>( \delta )</th>
<th>GPA+( \delta )</th>
<th>F(X,GPA+( \delta ))</th>
<th>Change in F(X,GPA)</th>
<th>Change in GPA</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>13.11719</td>
<td>1</td>
<td>0.73419189</td>
<td>10</td>
<td>0.0734191890</td>
</tr>
<tr>
<td>1</td>
<td>4.11719</td>
<td>0.841409951</td>
<td>0.575601841</td>
<td>1</td>
<td>0.5756018408</td>
</tr>
<tr>
<td>0.1</td>
<td>3.21719</td>
<td>0.321696605</td>
<td>0.055888495</td>
<td>0.1</td>
<td>0.5588849545</td>
</tr>
<tr>
<td>0.01</td>
<td>3.12719</td>
<td>0.27116854</td>
<td>0.00536043</td>
<td>0.01</td>
<td>0.5360430345</td>
</tr>
<tr>
<td>0.001</td>
<td>3.11819</td>
<td>0.266341711</td>
<td>0.000533601</td>
<td>0.001</td>
<td>0.5336010479</td>
</tr>
<tr>
<td>0.0001</td>
<td>3.11729</td>
<td>0.26586143</td>
<td>5.33203E-05</td>
<td>0.0001</td>
<td>0.5332029760</td>
</tr>
</tbody>
</table>

Using the `margins` command for MEMs & AMEs,

\[ . \text{quietly probit grade gpa tuce i.psi, nolog} \]
\[ . \text{margins, dydx(*)) atmeans} \]

Conditional marginal effects

\[ \text{Number of obs = 32} \]
\[ \text{Model VCE : OIM} \]

Expression : Pr(grade), predict()
\[ \text{dy/dx w.r.t. : gpa tuce 1.psi} \]
\[ \text{at : gpa = 3.117188 (mean)} \]
\[ \text{tuce = 21.9375 (mean)} \]
\[ \text{0.psi = .5625 (mean)} \]
\[ \text{1.psi = .4375 (mean)} \]

| Delta-method | dy/dx | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|--------------|-------|-----------|------|------|-----------------------|
| gpa          | .5333471 | .2324641 | 2.29 | 0.022 | .0777259 -.9889683   |
| tuce         | .0169697 | .0271198 | 0.63 | 0.531 | -.0361841 .0701235   |
| 1.psi        | .4644260 | .1702807 | 2.73 | 0.006 | .1306819 .7981701   |

Note: dy/dx for factor levels is the discrete change from the base level.

\[ . \text{margins, dydx(*))} \]

Average marginal effects

\[ \text{Number of obs = 32} \]
\[ \text{Model VCE : OIM} \]

Expression : Pr(grade), predict()
\[ \text{dy/dx w.r.t. : gpa tuce 1.psi} \]

| Delta-method | dy/dx | Std. Err. | z    | P>|z| | [95% Conf. Interval] |
|--------------|-------|-----------|------|------|-----------------------|
| gpa          | .3607863 | .1133816 | 3.18 | 0.001 | .1385625 .5830102   |
| tuce         | .0114793 | .0184095 | 0.62 | 0.533 | -.0246027 .0475612   |
| 1.psi        | .3737518 | .1399913 | 2.67 | 0.008 | .099374 .6481297    |

Note: dy/dx for factor levels is the discrete change from the base level.

As a sidelight, note that the marginal effects (both MEMs and AMEs) for probit are very similar to the marginal effects for logit. This is usually the case.
OLS. Here is what you get when you compute the marginal effects for OLS:

```
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg.dta, clear
. reg income educ jobexp black
```

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>33206.4588</td>
<td>3</td>
<td>11068.8196</td>
<td>F( 3, 496) = 787.14</td>
</tr>
<tr>
<td>Residual</td>
<td>6974.79047</td>
<td>496</td>
<td>14.0620776</td>
<td>Prob &gt; F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>40181.2493</td>
<td>499</td>
<td>80.5235456</td>
<td>R-squared = 0.8264</td>
</tr>
</tbody>
</table>

```
. margins, dydx(*) atmeans
```

Conditional marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : educ jobexp black
at          :
    educ = 13.16 (mean)
    jobexp = 13.52 (mean)
    black = 0.2 (mean)

```
<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>educ</td>
<td>1.840407</td>
<td>0.0467507</td>
<td>39.37</td>
<td>0.000</td>
</tr>
<tr>
<td>jobexp</td>
<td>0.6514259</td>
<td>0.0350604</td>
<td>18.58</td>
<td>0.000</td>
</tr>
<tr>
<td>black</td>
<td>-2.55136</td>
<td>0.4736266</td>
<td>-5.39</td>
<td>0.000</td>
</tr>
<tr>
<td>_cons</td>
<td>-4.72676</td>
<td>0.9236842</td>
<td>-5.12</td>
<td>0.000</td>
</tr>
</tbody>
</table>
```

```
. margins, dydx(*)
```

Average marginal effects
Model VCE : OLS
Expression : Linear prediction, predict()
dy/dx w.r.t. : educ jobexp black

```
<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
<td>Std. Err.</td>
<td>z</td>
<td>P></td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>-----------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>educ</td>
<td>1.840407</td>
<td>0.0467507</td>
<td>39.37</td>
<td>0.000</td>
</tr>
<tr>
<td>jobexp</td>
<td>0.6514259</td>
<td>0.0350604</td>
<td>18.58</td>
<td>0.000</td>
</tr>
<tr>
<td>black</td>
<td>-2.55136</td>
<td>0.4736266</td>
<td>-5.39</td>
<td>0.000</td>
</tr>
</tbody>
</table>
```

The marginal effects are the same as the slope coefficients. This is because relationships are linear in OLS regression and do not vary depending on the values of the other variables.