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References:  “marginscontplot: Plotting the marginal effects of continuous predictors”, by Patrick Royston. Stata Journal Volume 
13 Number 3: pp. 510-527. Available for free at http://www.stata-journal.com/article.html?article=gr0056. My thanks to Patrick 
Royston for suggesting helpful improvements to this handout. Also, Royston has also released marginscontplot2/mcp2, which 
uses a slightly different syntax. Both mcp and mcp2 can be found and installed with the findit command. 

 
Introduction 
 
We have talked a lot about ways to make effects of variables in nonlinear models easier to 
understand and interpret. However, the primary emphasis has been on categorical independent 
variables, e.g. race, religion, gender. Some methods that are helpful with categorical independent 
variables are not so helpful for continuous independent variables, or else need modification. 
Consider, for example, Average Marginal Effects: 
 
. * Set up data 
. set more off 
. webuse nhanes2f, clear 
. keep if !missing(diabetes, black, female, age) 
(2 observations deleted) 
. label define black 0 "nonBlack" 1 "black" 
. label define female 0 "male" 1 "female" 
. label values female female 
. label values black black 
. quietly logit diabetes i.black i.female age c.age#c.age, nolog 
. margins, dydx(*) 
 
Average marginal effects                          Number of obs   =      10335 
Model VCE    : OIM 
 
Expression   : Pr(diabetes), predict() 
dy/dx w.r.t. : 1.black 1.female age 
 
------------------------------------------------------------------------------ 
             |            Delta-method 
             |      dy/dx   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       black | 
      black  |   .0404163   .0087456     4.62   0.000     .0232752    .0575574 
             | 
      female | 
     female  |   .0069065   .0041324     1.67   0.095    -.0011928    .0150059 
         age |   .0021114   .0002542     8.30   0.000     .0016131    .0026096 
------------------------------------------------------------------------------ 
Note: dy/dx for factor levels is the discrete change from the base level. 

 
The AME for black tells us that, on average, blacks are 4 percentage points more likely to have 
diabetes than are comparable whites. That obscures a lot of individual-level variation (e.g. racial 
differences vary greatly by age) but still, it gives us a general idea of how great differences are. 
The AME for age, however, tells us what the instantaneous rate of change for age is. This may or 
may not be a very good approximation of the effect of a one unit change in age, and in any event 
it is much less intuitive than the AMEs for the categorical variables are. 
 

http://www3.nd.edu/%7Erwilliam/
http://www.stata-journal.com/article.html?article=gr0056
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Patrick Royston’s mcp (aka marginscontplot) command, which was introduced in 
September 2013, tries to address such concerns. The introduction to Royston’s article says 
 

The developers of Stata 11 and 12 have clearly put much effort into creating the margins and 
marginsplot commands. Their work appears to have been well received by users. However, 
margins and marginsplot are naturally focused on margins for categorical (factor) variables, 
and continuous predictors are arguably rather neglected. In this article, I present a new command, 
marginscontplot, which provides facilities to plot the marginal effect of a continuous 
predictor in a meaningful way for a wide range of regression models. In principle, it can handle 
any regression command for which margins is applicable and makes sense. This includes all the 
familiar commands such as regress, logit, probit, poisson, glm, stcox, streg, and 
xtreg. marginscontplot is also known as mcp for those who dislike typing the full 
command name. You may use marginscontplot and mcp interchangeably. 

 
mcp probably isn’t critical (you could do the same things with the margins command) but it 
greatly simplifies some tasks. I will cover a few highlights, but read the article and the help file 
to discover other powerful and useful features. 
 
The basic command 
 
. logit diabetes i.black i.female age c.age#c.age, nolog 
 
Logistic regression                               Number of obs   =      10335 
                                                  LR chi2(4)      =     381.03 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1808.5522                       Pseudo R2       =     0.0953 
 
------------------------------------------------------------------------------ 
    diabetes |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       black | 
      black  |   .7207406   .1266509     5.69   0.000     .4725093    .9689718 
             | 
      female | 
     female  |   .1566863   .0942032     1.66   0.096    -.0279486    .3413212 
         age |   .1324622   .0291223     4.55   0.000     .0753836    .1895408 
             | 
 c.age#c.age |  -.0007031   .0002753    -2.55   0.011    -.0012428   -.0001635 
             | 
       _cons |   -8.14958   .7455986   -10.93   0.000    -9.610926   -6.688233 
------------------------------------------------------------------------------ 
 
. est store m1 
. mcp age, show 
margins , at( age=( 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 
>  63 64 65 66 67 68 69 70 71 72 73 74) ) 
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The show option is optional; it tells mcp to display the margins command it generated 
internally, which can be helpful for making sure you are generating what you want to generate. 
 
Basically, what mcp did was compute the average adjusted prediction (AAP) for each of the 
observed values of age. Or, if you prefer, it computed the average adjusted prediction (AAP) at 
representative values of age, i.e. it is computing APRs (adjusted predictions at representative 
values) for age while all other variables were left at their observed values. If we preferred to get 
the APMs (adjusted predictions at the means of the other variables in the model) we could give 
the command 
 
. mcp age, show margopts(atmeans) 
 
If we want to get the same graph but with the confidence intervals for the predictions, 
 
. mcp age, ci 
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We could do pretty much the same thing with margins and marginsplot: 
 
. quietly margins, at(age=(20(1)74)) 
. marginsplot, noci 
 

 
 
All of the graphs make clear that, at least in this sample, young people have a very low 
likelihood of getting diabetes. However, the predicted probability of diabetes rises with age and 
is around 12% when people reach their 70s. This is probably much more informative than the 
logistic regression coefficients (whose interpretation is further complicated by the fact that the 
model includes both age and age2). It is also probably more informative than simply looking at 
the AMEs. As we saw before, the AMEs tell us that the instantaneous rate of change for age is 
.0021114. Other than being positive and significant, it is hard to say much about that effect. The 
average adjusted predictions for different values of age provide a much clearer picture. 
 
The mcp command saved us the trouble of figuring out what the at option should be and it also 
internally provided options that made the graph look nicer (which again we could have done 
ourselves but mcp saved us the work). These are relatively minor advantages but still nice. mcp 
has other options that further add to its usefulness. 
 
Controlling the range of plotted values 
 
By default, mcp plots AAPs for all of the observed values of the continuous variable. While this 
often works well, there can be problems with this approach.  

• First, the continuous variable may have many values; potentially, every case could have a 
unique value. Estimation can then be very slow and mcp may not work at all. Further, it 
is highly unlikely that you need to plot so many values to get a good graph. 

• Second, there may be times when you want to make predictions outside the range of 
observed values, e.g. you want to see the predicted probability of diabetes for someone 
who is older than anyone in your sample.  

• Conversely, third, you may want to plot only a limited range of the observed values. 
Sometimes we have extreme values at either end of the distribution. These can zap your 
graphs because the extreme cases force you to extend the axes. For example, with the 
Nhanes2f data, 99% of the cases have a weight of 116 kg or less; but the heaviest person 
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has a weight of 176 kg. When there are extreme outliers, a large portion of your graph 
can be taken up plotting values for very rare and atypical cases. 

 
There are various ways of dealing with these issues. First, we can use the var1 option. As the 
mcp help explains, “If var1(#) is specified, then # equally spaced values of xvar1 are used as 
plotting positions, encompassing the observed range of xvar1.” So, for example, if we specify 
var1(20), 20 equally spaced points will be plotted: 
 
. mcp age, var1(20) show 
margins , at( age=( 20 22.84210586548 25.68420982361 28.52631568909 31.36842155457 
34.2105255127 37.05263137817 39.8 
> 9473724365 42.73684310913 45.57894897461 48.42105102539 51.26315689087 
54.10526275635 56.94736862183 59.7894744873 
>  62.63158035278 65.47368621826 68.31578826904 71.15789794922 74) ) 
 

 
 
This looks pretty much identical to the earlier graph, but you can specify a larger value (e.g. 50) 
if you want/need even more precision. I quite frequently specify var1(20) or var1(50). 
You don’t have to worry about the xvar having too many values and picking 20 points to plot is 
probably almost always enough. 
 
Use of var1 still leaves you open to the other two problems: you don’t see predictions outside 
the observed range, and extreme outliers could still force the X axis to be extended greatly. The 
at1 option may therefore be better in many cases. 
 
Using the at1 option, you can control the range yourself, making it either broader or narrower 
than the observed range. In the example below, I extend the range of age to go between 20 and 
100 rather than 20 and 74. In this particular case, this is probably a bad idea, since 100 is well 
outside the observed range of the data, but it may make more sense in other situations.  
 
. mcp age, at1(20(1)100) show 
margins , at( age=( 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 
>  63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 
94 95 96 97 98 99 100) ) 
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Because of the squared term, we know that at some point the predicted effect of age should start 
declining, and the graph shows that this happens sometime after age 90 (although again I 
wouldn’t trust a prediction that is so far outside the range of the observed data; in a moment 
we’ll see what may be a better way to model the data). 
 
Sometimes we have extreme values at either end of the distribution. These can zap your graphs 
because the extreme cases force you to extend the axes. As Royston points out, “We can 
limit the plotting values according to chosen centiles… by using the % prefix in the 
at1() option.” So, for example, suppose I want to exclude the bottom and top 10%. I could do 
something like the following: 
 
. mcp age, at1(% 10 (1) 90) show 
margins , at( age=( 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69) ) 
 

 
 
In this case you see that ages less than 23 and greater than 69 were excluded from the graph. 
Royston provides a more dramatic example, where 99% of the cases have a value of 998 or less 
but the highest value is 2,380. 
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Models with transformed X 
 
This may be the feature I like most about mcp. Sometimes it makes sense to use things like the 
log of X rather than X in the model. So, we are going to modify our current example to use the 
natural log of X rather than X and X2.  
 
. generate logage = log(age) 
. logit diabetes i.black i.female logage, nolog 
 
Logistic regression                               Number of obs   =      10335 
                                                  LR chi2(3)      =     381.88 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -1808.1268                       Pseudo R2       =     0.0955 
 
------------------------------------------------------------------------------ 
    diabetes |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
       black | 
      black  |   .7203993   .1266702     5.69   0.000     .4721303    .9686682 
             | 
      female | 
     female  |   .1559777    .094211     1.66   0.098    -.0286724    .3406278 
      logage |   2.907695   .1949347    14.92   0.000      2.52563     3.28976 
       _cons |   -14.6621   .7984324   -18.36   0.000      -16.227    -13.0972 
------------------------------------------------------------------------------ 
 
. est store m2 
. lrtest m1 m2, stats 
 
Likelihood-ratio test                                 LR chi2(1)  =     -0.85 
(Assumption: m2 nested in m1)                         Prob > chi2 =    1.0000 
 
Akaike's information criterion and Bayesian information criterion 
 
----------------------------------------------------------------------------- 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+--------------------------------------------------------------- 
          m2 |  10335   -1999.067   -1808.127      4     3624.254    3653.227 
          m1 |  10335   -1999.067   -1808.552      5     3627.104    3663.321 
----------------------------------------------------------------------------- 
               Note:  N=Obs used in calculating BIC; see [R] BIC note 

 
As we see, the effect of logage is highly significant. If we viewed this and the model with X2 as 
competing theories, both the BIC and AIC tests favor the model with logage. 
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Plotting the results with mcp, 
 
. mcp logage 
 

 
 
This shows us that, as the log of age goes up, the probability of diabetes increases. However, 
most of us are not used to thinking in terms of the log of age. We would rather see the values 
plotted against age. Here is how you can do that: 
 
. summarize age 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
         age |     10335    47.56584    17.21752         20         74 
 
. range w1 r(min) r(max) 20 
(10315 missing values generated) 
 
. generate logw1 = log(w1) 
(10315 missing values generated) 
 
. fre w1 logw1, tab(5) 
 
w1 
-------------------------------------------------------------- 
                 |      Freq.    Percent      Valid       Cum. 
-----------------+-------------------------------------------- 
Valid   20       |          1       0.01       5.00       5.00 
        22.84211 |          1       0.01       5.00      10.00 
        25.68421 |          1       0.01       5.00      15.00 
        28.52632 |          1       0.01       5.00      20.00 
        31.36842 |          1       0.01       5.00      25.00 
        :        |          :          :          :          : 
        62.63158 |          1       0.01       5.00      80.00 
        65.47369 |          1       0.01       5.00      85.00 
        68.31579 |          1       0.01       5.00      90.00 
        71.1579  |          1       0.01       5.00      95.00 
        74       |          1       0.01       5.00     100.00 
        Total    |         20       0.19     100.00            
Missing .        |      10315      99.81                       
Total            |      10335     100.00                       
-------------------------------------------------------------- 
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logw1 
-------------------------------------------------------------- 
                 |      Freq.    Percent      Valid       Cum. 
-----------------+-------------------------------------------- 
Valid   2.995732 |          1       0.01       5.00       5.00 
        3.128606 |          1       0.01       5.00      10.00 
        3.245876 |          1       0.01       5.00      15.00 
        3.350827 |          1       0.01       5.00      20.00 
        3.445802 |          1       0.01       5.00      25.00 
        :        |          :          :          :          : 
        4.137269 |          1       0.01       5.00      80.00 
        4.181648 |          1       0.01       5.00      85.00 
        4.224141 |          1       0.01       5.00      90.00 
        4.264901 |          1       0.01       5.00      95.00 
        4.304065 |          1       0.01       5.00     100.00 
        Total    |         20       0.19     100.00            
Missing .        |      10315      99.81                       
Total            |      10335     100.00                       
-------------------------------------------------------------- 

 
What the range command did was divide age up into 20 equally spaced intervals (you can use 
more intervals or less if you like). logw1 is the natural log of those 20 values. We can now do the 
following: 
 
. mcp age (logage), var1(w1 (logw1)) show 
margins , at( logage=( 2.995732307434082 3.128605604171753 3.245876312255859 3.350826978683472 
3.445801734924316 3.532533407211304 3.61233925819397  
> 3.686244487762451 3.755061388015747 3.819445848464966 3.879934549331665 3.936972379684448 
3.990931510925293 4.04212760925293 4.090829849243164 4.1 
> 37269496917725 4.181648254394531 4.224141120910645 4.264901161193848 4.304065227508545) ) 
 

 
 
mcp plotted the AAPs for each of the 20 values of logage that had been computed. However, by 
saying  
 
. mcp age (logage), var1(w1 (logw1)) show 

 
mcp knew to show the corresponding value of age for each value of logage. As for the var1 
option, the help says 
 

var1(#|var1_spec) specifies plotting values of xvar1.  If var1(#) is specified, then # equally spaced 
values of xvar1 are used as plotting positions, encompassing the observed range of xvar1. 
Alternatively, var1_spec may be used to specify transformed plotting values of xvar1.  The syntax 
of var1_spec is var1 [(var1a [var1b ...])].  var1 is a variable holding user-specified plotting values 
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of xvar1.  var1a is a variable holding transformed values of var1 and similarly for var1b ... if 
required. 
 

It may be easier just to use this as a template rather than trying to understand exactly what is 
being done! But see Royston’s article or the help file for mcp for more details. 
 
Plotting multiple groups simultaneously 
 
You can specify both a continuous variable followed by a categorical variable if you want to see 
plots for separate groups, e.g. 
 
. quietly logit diabetes i.black i.female age c.age#c.age, nolog 
. mcp age black, plotopts(scheme(sj)) 
 

 
 

NOTE: The plotopts(scheme(sj)) option is good if your graphics have to be viewed in black and white 
rather than color – you may wish to use it for all the graphics in a paper (or at least always use the same scheme, 
whatever it is). See help schemes for more details. Alternatively, as Patrick Royston pointed out to me, if you 
want all your graphics to use scheme(sj), you can precede your commands with 
 
set scheme sj 

 
As we have seen before, racial differences in the likelihood of having diabetes are very small at 
younger ages, but increase greatly as people get older. If you want to view the confidence 
intervals as well, mcp plots each group separately to make the graph easier to read. 
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. mcp age black, ci 
 

 
 
One thing I dislike about the above is that the Y axis is scaled differently for the two groups, 
making comparisons difficult across groups. Patrick Royston emailed me and noted that, if you 
want to, you can change that by adding the plotopts(ycommon) option: 
 
.  mcp age black, ci plotopts(ycommon) 
 

 
 
Note that the x2 variable doesn’t have to be categorical. You can use a continuous variable, BUT 
be sure to limit it to only a few plotting values!!! Otherwise mcp will try to plot a separate line 
for each value of x2. In the following example, I add weight to the model; and I have the 
adjusted predictions for weight plotted at ages 20 (young), 45 (middle aged) and 70 (old). I also 
exclude the extreme outliers on weight. 
 
. quietly logit diabetes i.black i.female age c.age#c.age c.weight, nolog 
. mcp weight age, at1(% 1 (1) 99) at2(20 45 70) plotopts(scheme(sj)) show 
margins , at( weight=( 44.0418 46.61 47.97 49.22 50.01 50.8 51.71 52.28 52.96 53.52 
54.21 54.77 55.34 55.91 56.36 56 
> .93 57.38 57.83 58.29 58.63 59.08 59.53 59.99 60.33 60.67 61.12 61.58 61.9904 62.26 
62.71 63.05 63.39 63.73 64.18  
> 64.64 64.98 65.43 65.77 66.11 66.57 66.79 67.13 67.47 67.93 68.38 68.72 69.17 69.51 
69.97 70.42 70.76 71.1 71.44 7 
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> 1.9 72.24 72.58 73.03 73.48 73.94 74.28 74.73 75.1316 75.52 75.86 76.32 76.89 77.34 
77.91 78.36 78.81 79.15 79.61  
> 80.06 80.63 81.25 81.76 82.21 82.7404 83.35 83.92 84.6 85.16 85.73 86.52 87.09 87.88 
88.68 89.59 90.5884 91.63 93. 
> 1 94.24 95.82 97.64 99.68 102.2276 104.9932 108.75 115.7382) age=( 20 45 70)) 
 

 
 

Basically, the graph suggests that young people can get by with being heavier, at least in terms of 
their likelihood of having diabetes. But the older you are, the greater the risk of being heavier. 
 
Incidentally, see what happens to the graph if I do not exclude outliers on weight: 
 
. mcp weight age, var1(30) at2( 20 45 70) plotopts(scheme(sj)) show 
margins , at( weight=( 30.84000015259 35.841381073 40.84275817871 45.84413909912 
50.84551620483 55.84689712524 60.84 
> 827423096 65.84965515137 70.85103607178 75.85241699219 80.8537902832 85.85517120361 
90.85655212402 95.85793304443  
> 100.8593139648 105.8606872559 110.8620681763 115.8634490967 120.8648300171 
125.8662033081 130.8675842285 135.86897 
> 27783 140.8703460693 145.8717193604 150.8731079102 155.8744812012 160.8758544922 
165.877243042 170.878616333 175.8 
> 800048828) age=( 20 45 70)) 
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Basically, those 1% of the cases with weight > 116 kg take up a huge portion of the graph. That 
isn’t necessarily bad, but the more extreme the outliers, the more impact they will have on how 
the graph looks. 
 
 
Other features 
 
Royston gives much more complicated examples. For example, he shows how to use mcp with 
fractional polynomials and with spline functions. The appendix gives an example for spline 
functions that Royston emailed me. 
 
We’ve been focusing on logistic regression, but mcp can be useful with many other techniques, 
especially if there is some sort of nonlinearity in the effects, e.g. a linear regression model that 
includes a squared term: 
 
. sysuse auto, clear 
(1978 Automobile Data) 
. quietly reg price mpg c.mpg#c.mpg 
. mcp mpg 
 

 
 

Conversely, mcp may be less useful with multiple outcome commands like ologit and 
mlogit. Other commands and approaches may be better. 
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Appendix: Analysis with Spline Models (Optional) 
 
In Section 6.2 of his Stata Journal Article, Patrick Royston notes that mcp can be used for the 
analysis of spline models. He describes the procedure but, because of space limitations, does not 
provide an actual example. Royston graciously emailed me an example and said I was free to 
include it in an appendix. If you are not familiar with spline models, my own (somewhat 
primitive) notes on them are currently located at https://www3.nd.edu/~rwilliam/stats2/l61.pdf.  
 
Here (copied verbatim) is how Royston describes the procedure in section 6.2 of his paper (page 
524). FP refers to fractional polynomial models he has earlier discussed. 

 
6.2 Analysis with spline models 
The techniques described above for plotting results from FP models can be applied in a similar 
fashion to spline models or indeed to any model involving nonlinear transformations of continuous 
predictors. Space limitation prevents me from giving full details. In principle, the steps for spline 
modeling are as follows: 

 
1. Determine a suitable spline model for the data. 

2. Create the required spline basis variables for all continuous covariates with a nonlinear 
effect. (This is analogous to the fracgen operations described above. You can, for example, 
use Stata’s mkspline command.) 

3. Fit the selected model, including the spline basis variables and, if necessary, any important 
interactions. 

4. For a given continuous predictor whose marginal effect is to be plotted, create a variable 
holding a limited number of plotting positions. 

5. Transform the plotting-positions variable into the requisite number of spline basis variables, 
using the same knot numbers and positions as in the main analysis. These transformed 
variables provide the “look-up table” for plotting the fit on the original scale of the 
predictor (for example, plotting at actual ages rather than at meaningless transformed 
values). 

6. Run marginscontplot with an appropriate syntax. 
 

Of course, this simple schema hides many issues connected with spline model se- 
lection. These issues are beyond the present scope. 

 
Here is the example Royston sent me. 
 
. set scheme sj 
. /* 
>         Spline example, 4 knots at 5 35 65 95 centiles of age. 
> */ 
. global stub ex3b 
 
. webuse nhanes2f, clear 
. keep if sex==1 
(5,428 observations deleted) 
 
. gen map = (bpsystol + 2 * bpdiast)/3 

http://www3.nd.edu/%7Erwilliam/stats2/l61.pdf
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. gen bmi = weight / (height/100)^2 
 
. // Generate splines for age (3 basis variables, zage1-zage3) 
. mkspline zage = age, cubic nknots(4) 
 
. matrix knots = r(knots) 
. local knots 
 
. forvalues j = 1 / 4 { 
  2.         local k = knots[1, `j'] 
  3.         local knots `knots' `k' 
  4. } 
 
. regress map zage1 zage2 zage3 i.race bmi hgb race#c.(zage1 zage2 zage3) 
c.bmi#c.(zage1 zage2 zage3) c.hgb#c.(zage1 zage2 zage3) 
 
      Source |       SS           df       MS      Number of obs   =     4,909 
-------------+----------------------------------   F(19, 4889)     =     70.80 
       Model |  207315.291        19  10911.3311   Prob > F        =    0.0000 
    Residual |   753450.02     4,889  154.111274   R-squared       =    0.2158 
-------------+----------------------------------   Adj R-squared   =    0.2127 
       Total |  960765.311     4,908  195.754953   Root MSE        =    12.414 
 
------------------------------------------------------------------------------- 
          map |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
        zage1 |   .6891498    .866393     0.80   0.426     -1.00937    2.387669 
        zage2 |  -.6338776   2.597714    -0.24   0.807    -5.726564    4.458809 
        zage3 |    3.00986   5.968327     0.50   0.614    -8.690742    14.71046 
              | 
         race | 
       Black  |  -6.056786   5.286132    -1.15   0.252    -16.41998    4.306408 
       Other  |  -18.51118   10.46613    -1.77   0.077    -39.02949    2.007124 
              | 
          bmi |   1.161587   .4080617     2.85   0.004     .3616028    1.961571 
          hgb |   2.610948   1.545072     1.69   0.091    -.4180872    5.639983 
              | 
 race#c.zage1 | 
       Black  |    .253888   .1889982     1.34   0.179    -.1166335    .6244095 
       Other  |   .5891385   .3719267     1.58   0.113    -.1400049    1.318282 
              | 
 race#c.zage2 | 
       Black  |  -.0472001   .5911214    -0.08   0.936    -1.206064    1.111663 
       Other  |  -1.804639   1.248918    -1.44   0.149     -4.25308    .6438023 
              | 
 race#c.zage3 | 
       Black  |  -.5428157   1.385617    -0.39   0.695    -3.259247    2.173615 
       Other  |   5.148125   3.047475     1.69   0.091    -.8262966    11.12255 
              | 
c.bmi#c.zage1 |   .0011632   .0143081     0.08   0.935     -.026887    .0292135 
              | 
c.bmi#c.zage2 |   .0088059   .0442823     0.20   0.842    -.0780072    .0956191 
              | 
c.bmi#c.zage3 |  -.0671791   .1039884    -0.65   0.518    -.2710431    .1366849 
              | 
c.hgb#c.zage1 |  -.0440967   .0538712    -0.82   0.413    -.1497084     .061515 
              | 
c.hgb#c.zage2 |    .066313   .1616061     0.41   0.682    -.2505075    .3831335 
              | 
c.hgb#c.zage3 |  -.1794604   .3711939    -0.48   0.629    -.9071672    .5482465 
              | 
        _cons |   24.43988   24.90575     0.98   0.326    -24.38658    73.26634 
------------------------------------------------------------------------------- 
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. // Create spline-transformed plotting ages 
. local ages 20 22 24 26 28 30 35 40 45 50 55 60 70 
 
. gen ages = . 
(4,909 missing values generated) 
 
. tokenize `ages' 
 
. local i 1 
 
. while "``i''" != "" { 
  2.         qui replace ages = ``i'' in `i' 
  3.         local ++i 
  4. } 
 
. mkspline wage = ages, cubic knots(`knots') 
.  
. local stuff lp(l - _ _- -.) lwidth(medthick ..) 
 
. marginscontplot age (zage1 zage2 zage3), var1(ages(wage1 wage2 wage3)) ci /// 
>  plotopts(title("(a) Age only", placement(west)) leg(off) name(g1, replace)) 
 

 
  
. marginscontplot age (zage1 zage2 zage3) race, var1(ages(wage1 wage2 wage3)) /// 
> plotopts(`stuff' title("(b) Age x race", placement(west)) legend(label(1 "White") 
label(2 "Black") label(3 "Other") row(1)) name(g2, replace)) 
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. marginscontplot age (zage1 zage2 zage3) bmi, at2(20(5)40) var1(ages(wage1 wage2 
wage3)) /// 
>  plotopts(`stuff' title("(c) Age x BMI", placement(west)) legend(label(1 "20") 
label(2 "25") label(3 "30") label(4 "35") label(5 "40") row(1)) name(g3, replace)) 
 

 
 
 
. marginscontplot age (zage1 zage2 zage3) hgb, at2(13(1)16) var1(ages(wage1 wage2 
wage3)) /// 
> plotopts(`stuff' title("(d) Age x haemoglobin", placement(west)) legend(label(1 
"13") label(2 "14") label(3 "15") label(4 "16") label(5 "17") row(1)) name(g4, re 
> place)) 
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. graph combine g1 g2 g3 g4, imargin(small) saving($stub, replace) 
(file ex3b.gph saved) 
 

 
 
. graph export $stub.eps, replace 
(file ex3b.eps written in EPS format) 
 
. graph drop g1 g2 g3 g4 
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