
Richard Williams (with assistance from Cheng Wang)
Notre Dame Sociology
rwilliam@ND.Edu
https://www3.nd.edu/~rwilliam
August 2012 Annual Meetings of the American Sociological Association

Last revised February 26, 2022

mailto:rwilliam@ND.Edu
https://www3.nd.edu/%7Erwilliam


Introduction
• We are used to estimating models where an observed, 

continuous independent variable, Y, is regressed on one or 
more independent variables, i.e.

• Since the residuals are uncorrelated with the Xs, it follows 
that

2,  (0, )Y X Nα β ε ε σ= + +∑ 

( ) ( ) ( )
Explained Variance + Residual Variance

V Y V X Vα β ε= + +

=
∑



• As you add explanatory variables to a model, the variance of the 
observed variable Y stays the same in OLS regression. As the 
explained variance goes up, the residual variance goes down by a 
corresponding amount.

• Put another way – As the next slide shows, as you add variables to
an OLS regression, the Total Sum of Squares stays the same, but the 
allocation between the Model (Explained) and Residual 
(Unexplained) Sums of Squares shifts, i.e. adding more variables 
increases the Explained SS and decreases the unexplained SS by a 
corresponding amount.
▫ Recall too that MS Total is the variance of y. It stays the same 

regardless of what variables are added or dropped from the 
model. In this case it equals 1.4549. In other words, v(y) is a fixed 
quantity and does not depend on the variables in the model.



. nestreg: reg health black (age sex height weight) 
 
Block 1: black 
 
      Source |       SS           df       MS      Number of obs   =    10,335 
-------------+----------------------------------   F(1, 10333)     =    173.65 
       Model |  248.486541         1  248.486541   Prob > F        =    0.0000 
    Residual |  14786.5348    10,333  1.43100115   R-squared       =    0.0165 
-------------+----------------------------------   Adj R-squared   =    0.0164 
       Total |  15035.0214    10,334   1.4549082   Root MSE        =    1.1962 
 
[Output deleted] 
 
Block 2: age sex height weight 
 
      Source |       SS           df       MS      Number of obs   =    10,335 
-------------+----------------------------------   F(5, 10329)     =    410.86 
       Model |  2494.19977         5  498.839954   Prob > F        =    0.0000 
    Residual |  12540.8216    10,329  1.21413705   R-squared       =    0.1659 
-------------+----------------------------------   Adj R-squared   =    0.1655 
       Total |  15035.0214    10,334   1.4549082   Root MSE        =    1.1019 



• But suppose the observed Y is not continuous – instead, 
it is a collapsed version of an underlying unobserved 
variable, Y*

• Examples:
▫ Do you approve or disapprove of the President's health 

care plan?  1 = Approve, 2 = Disapprove
▫ Income, coded in categories like $0 = 1, $1- $10,000 = 

2, $10,001-$30,000 = 3, $30,001-$60,000 = 4, 
$60,001 or higher = 5



• For such variables, also known as limited 
dependent variables, we know the interval that 
the underlying Y* falls in, but not its exact value

• Binary & Ordinal regression techniques allow us 
to estimate the effects of the Xs on the 
underlying Y*.  They can also be used to see how 
the Xs affect the probability of being in one 
category of the observed Y as opposed to 
another.



• The latent variable model in binary logistic regression 
can be written as

If y* >= 0, y = 1
If y* < 0, y = 0

In logistic regression, the errors are assumed to have a 
standard logistic distribution. A standard logistic 
distribution has a mean of 0 and a variance of π2/3, or 
about 3.29.

* ,  Standard Logisticy Xα β ε ε= + +∑ 



• Since the residuals are uncorrelated with the Xs, it follows that

• Notice an important difference between OLS and Logistic Regression. 
▫ In OLS regression with an observed variable Y, V(Y) is fixed and the 

explained and unexplained variances change as variables are added 
to the model. 

▫ But in logistic regression with an unobserved variable y*, V(εy*) is 
fixed so the explained variance and total variance change as you add 
variables to the model.

▫ This difference has important implications. Comparisons of 
coefficients between nested models and across groups do not work 
the same way in logistic regression as they do in OLS.
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Comparing Logit and Probit
Coefficients across Models

                                                                              
       _cons    -.0723833   .1058261    -0.68   0.494    -.2797987    .1350321
          x2     .4886751   .0482208    10.13   0.000      .394164    .5831861
                                                                              
     ybinary        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -266.25298                     Pseudo R2         =     0.2314
                                                Prob > chi2       =     0.0000
                                                LR chi2(1)        =     160.35
Logistic regression                             Number of obs     =        500

. logit ybinary x2, nolog

                                                                              
       _cons    -.0529777    .105911    -0.50   0.617    -.2605594     .154604
          x1     .7388677   .0729611    10.13   0.000     .5958667    .8818688
                                                                              
     ybinary        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood = -265.54468                     Pseudo R2         =     0.2335
                                                Prob > chi2       =     0.0000
                                                LR chi2(1)        =     161.77
Logistic regression                             Number of obs     =        500

. logit ybinary x1, nolog

. use https://www3.nd.edu/~rwilliam/statafiles/standardized.dta, clear



. logit  ybinary x1 x2, nolog 
 
Logit estimates                                   Number of obs   =        500 
                                                  LR chi2(2)      =     443.39 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -124.73508                       Pseudo R2       =     0.6399 
 
------------------------------------------------------------------------------ 
     ybinary |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          x1 |    1.78923   .1823005     9.81   0.000     1.431927    2.146532 
          x2 |   1.173144   .1207712     9.71   0.000     .9364369    1.409851 
       _cons |  -.2144856   .1626906    -1.32   0.187    -.5333532    .1043821 
------------------------------------------------------------------------------ 

 
Usually, when we add variables to a model (at least in OLS regression), the effects of variables 
added earlier goes down.  However, in this case, we see that the coefficients for x1 and x2 
increase (seemingly) dramatically when both variables are in the model, i.e. in the separate 
bivariate regressions the effects of x1 and x2 are .7388678 and .4886751, but in the multivariate 
regressions the effects are 1.78923 and 1.173144, more than twice as large as before.  This leads 
to two questions: 
 
1. If we saw something similar in an OLS regression, what would we suspect was going on?  
In other words, in an OLS regression, what can cause coefficients to get bigger rather than 
smaller as more variables are added? 
2. In a logistic regression, why might such an interpretation be totally wrong?  



• x1 and x2 are uncorrelated! So suppressor effects cannot 
account for the changes in coefficients.

• Long & Freese’s listcoef command can add some 
insights.

. corr, means 
 
(obs=500) 
 
    Variable |         Mean    Std. Dev.          Min          Max 
-------------+---------------------------------------------------- 
           y |     5.51e-07     3.000001    -8.508021     7.981196 
     ybinary |         .488     .5003566            0            1 
          x1 |    -2.19e-08            2     -6.32646     6.401608 
          x2 |     3.57e-08            3    -10.56658     9.646875 
 
 
             |        y  ybinary       x1       x2 
-------------+------------------------------------ 
           y |   1.0000 
     ybinary |   0.7923   1.0000 
          x1 |   0.6667   0.5248   1.0000 
          x2 |   0.6667   0.5225   0.0000   1.0000 



. quietly logit ybinary x1 

. listcoef, std 
 
logit (N=500): Unstandardized and Standardized Estimates  
 
 Observed SD: .50035659 
   Latent SD: 2.3395663 
 
  Odds of: 1 vs 0 
 
------------------------------------------------------------------------------- 
     ybinary |      b         z     P>|z|    bStdX    bStdY   bStdXY      SDofX 
-------------+----------------------------------------------------------------- 
          x1 |   0.73887   10.127   0.000   1.4777   0.3158   0.6316     2.0000 
------------------------------------------------------------------------------- 
 
. quietly logit  ybinary x2 
. listcoef, std 
 
logit (N=500): Unstandardized and Standardized Estimates  
 
 Observed SD: .50035659 
   Latent SD: 2.3321875 
 
  Odds of: 1 vs 0 
 
------------------------------------------------------------------------------- 
     ybinary |      b         z     P>|z|    bStdX    bStdY   bStdXY      SDofX 
-------------+----------------------------------------------------------------- 
          x2 |   0.48868   10.134   0.000   1.4660   0.2095   0.6286     3.0000 
------------------------------------------------------------------------------- 



. quietly logit  ybinary x1 x2 

. listcoef, std 
 
logit (N=500): Unstandardized and Standardized Estimates  
 
 Observed SD: .50035659 
   Latent SD: 5.3368197 
 
  Odds of: 1 vs 0 
 
------------------------------------------------------------------------------- 
     ybinary |      b         z     P>|z|    bStdX    bStdY   bStdXY      SDofX 
-------------+----------------------------------------------------------------- 
          x1 |   1.78923    9.815   0.000   3.5785   0.3353   0.6705     2.0000 
          x2 |   1.17314    9.714   0.000   3.5194   0.2198   0.6595     3.0000 
------------------------------------------------------------------------------- 



• Note how the standard deviation of y* fluctuates from 
one logistic regression to the next; it is about 2.34 in 
each of the bivariate logistic regressions and 5.34 in the 
multivariate logistic regression. 

• It is because the variance of y* changes that the 
coefficients change so much when you go from one 
model to the next. In effect, the scaling of Y* is different 
in each model. By way of analogy, if in one OLS 
regression income was measured in dollars, and in 
another it was measured in thousands of dollars, the 
coefficients would be very different. 



• Why does the variance of y* go up? Because it 
has to. The residual variance is fixed at 3.29, so 
improvements in model fit result in increases in 
explained variance which in turn result in 
increases in total variance.

• Hence, comparisons of coefficients across nested 
models can be misleading because the 
dependent variable is scaled differently in each 
model.



• How serious is the problem in practice?
▫ Hard to say. We easily found dozens of recent papers 

that present sequences of nested models. Their 
numbers are at least a little off, but without re-
analyzing the data you can’t tell whether their 
conclusions are seriously distorted as a result.

▫ Several attempts of our own using real world data have 
failed to raise major concerns with the comparisons

▫ We asked several authors for copies of their data, but 
most were unwilling or unable to do so.



• One author, Ervin (Maliq) Matthew, did graciously provide us with 
the data used for his paper “Effort Optimism in the Classroom: 
Attitudes of Black and White Students on Education, Social 
Structure, and Causes of Life Opportunities” (Sociology of 
Education 2011 84:225-245)

• The paper contains potentially problematic statements such as “The 
effect of race on the dependent variable is even stronger once GPA, 
SES, and sex are controlled for (Model 2), indicating that when 
blacks and whites have equal GPAs and family SES, blacks are more 
likely to agree with this statement.”

• In practice, however, we found that any potential errors were 
modest. For example, his Table 7 somewhat understates how much 
the effect of race declines as controls are added. (We semi-replicate 
his work later in this handout.)



• Nonetheless, researchers should realize that
▫ Increases in the magnitudes of coefficients across 

models need not reflect suppressor effects
▫ Declines in coefficients across models will actually be 

understated, i.e. you will be understating how much 
other variables account for the estimated direct effects 
of the variables in the early models.

▫ Distortions are potentially more severe when added 
variables greatly increase the pseudo R^2 statistics, as 
the variance of Y* will increase more when that is the 
case.



• What are possible solutions?
▫ Just don’t present the coefficients for each model in the first 

place. Researchers often present chi-square contrasts to show 
how they picked their final model and then only present the 
coefficients for it.

▫ Use y-standardization. With y-standardization, instead of fixing 
the residual variance, you fix the variance of y* at 1. This does not 
work perfectly, but it does greatly reduce rescaling of coefficients 
between models. 
 Listcoef gives the y-standardized coefficients in the column 

labeled bStdy, and they hardly changed at all between the 
bivariate and multivariate models (.3158 and .2095 in the 
bivariate models, .3353 and .2198 in the multivariate model).



▫ The Karlson/Holm/Breen (KHB) method (Papers 
are available in Sociological Methodology and The 
Stata Journal) shows great promise
 According to KHB, their method separates changes 

in coefficients due to rescaling from true changes in 
coefficients that result from adding more variables 
to the model (and does a better job of doing so than 
y-standardization and other alternatives)

 They further claim that with their method the total 
effect of a variable can be decomposed into its direct 
effect and its indirect effect.



• We would add that, when authors estimate sequences of models, it 
is often because they want to see how the effects of variables like 
race decline (or increase) after other variables are controlled for. 
▫ For example, a researcher might want to know how much of the 

effect of race is direct and how much is indirect (e.g. race affects 
education and education in turn affects the dependent variable.)

▫ If some of the effect of race is indirect, then the coefficient for 
race should decline as more variables are added to the model.

• The KHB method provides a parsimonious and more accurate way 
of depicting such changes.

• We’ll now present a few examples using khb, starting with the 
hypothetical example we had earlier.



khb Example 1: Hypothetical Data
. use https://www3.nd.edu/~rwilliam/statafiles/standardized, clear 
. nestreg: logit ybinary x1 x2, nolog 
 
Logistic regression                                     Number of obs =    500 
                                                        LR chi2(1)    = 161.77 
                                                        Prob > chi2   = 0.0000 
Log likelihood = -265.54468                             Pseudo R2     = 0.2335 
 
------------------------------------------------------------------------------ 
     ybinary | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
          x1 |   .7388677   .0729611    10.13   0.000     .5958667    .8818688 
       _cons |  -.0529777    .105911    -0.50   0.617    -.2605594     .154604 
------------------------------------------------------------------------------ 
 
Logistic regression                                     Number of obs =    500 
                                                        LR chi2(2)    = 443.39 
                                                        Prob > chi2   = 0.0000 
Log likelihood = -124.73508                             Pseudo R2     = 0.6399 
 
------------------------------------------------------------------------------ 
     ybinary | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
          x1 |    1.78923   .1823053     9.81   0.000     1.431918    2.146541 
          x2 |   1.173144   .1207745     9.71   0.000     .9364304    1.409858 
       _cons |  -.2144855   .1626923    -1.32   0.187    -.5333566    .1043856 
------------------------------------------------------------------------------ 



. khb logit ybinary x1 || x2 
 
Decomposition using the KHB-Method 
 
Model-Type:  logit                                 Number of obs     =     500 
Variables of Interest: x1                          Pseudo R2         =    0.64 
Z-variable(s): x2 
------------------------------------------------------------------------------ 
     ybinary | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
x1           | 
     Reduced |    1.78923   .1823053     9.81   0.000     1.431918    2.146541 
        Full |    1.78923   .1823053     9.81   0.000     1.431918    2.146541 
        Diff |   1.05e-08   .0011743     0.00   1.000    -.0023016    .0023016 
------------------------------------------------------------------------------ 



• As was the case when we ran this example 
before, the logistic regressions made it appear 
that the estimated effect of x1 more than doubled 
when x2 was added.

• khb shows that, in reality, the effect of x1 doesn’t 
change at all. The change shown earlier was 
entirely due to the rescaling of Y*.



Khb Example 2: Matthew Replication
• Matthew (2011; see Table 7, p. 240) examines the determinants 

of how likely a student is to feel they will have a job he or she 
enjoys (0 = 50 percent or lower; 1 = better than 50 percent).
▫ For unclear reasons, our replication results differ slightly from those 

presented in the paper.
• In the first model (see next slide), race (0 = white, 1 = black) is 

the only independent variable. The estimated effect of race is -
.507.

• In the final model controls are added for GPA, SES, and others. 
The effect of race declines to -.483, an apparent -.024 drop.



. use https://www3.nd.edu/~rwilliam/statafiles/soe2011, clear 

. nestreg: logit jobenjoy i.race (gpa ses sex educjob educimportant luckimportant sbprevent 
 
Logistic regression                                     Number of obs =  6,731 
                                                        LR chi2(1)    =  22.74 
                                                        Prob > chi2   = 0.0000 
Log likelihood = -2740.9172                             Pseudo R2     = 0.0041 
 
------------------------------------------------------------------------------ 
    jobenjoy | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
        race | 
      Black  |  -.5071732   .1023392    -4.96   0.000    -.7077544    -.306592 
       _cons |   1.856833   .0375953    49.39   0.000     1.783147    1.930518 
------------------------------------------------------------------------------ 
 
Logistic regression                                     Number of obs =  6,731 
                                                        LR chi2(8)    = 423.84 
                                                        Prob > chi2   = 0.0000 
Log likelihood = -2540.3718                             Pseudo R2     = 0.0770 
 
------------------------------------------------------------------------------- 
     jobenjoy | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
--------------+---------------------------------------------------------------- 
         race | 
       Black  |  -.4833004   .1095584    -4.41   0.000    -.6980309     -.26857 
          gpa |   .2896685   .0548232     5.28   0.000     .1822171      .39712 
          ses |   .0984206   .0527711     1.87   0.062    -.0050088      .20185 
          sex |   .1113716    .073942     1.51   0.132    -.0335521    .2562953 
      educjob |   .2508703   .1794196     1.40   0.162    -.1007857    .6025263 
educimportant |   .9474587   .0860938    11.00   0.000      .778718    1.116199 
luckimportant |  -.2183139   .1183016    -1.85   0.065    -.4501808    .0135529 
    sbprevent |  -.8611827    .079129   -10.88   0.000    -1.016273   -.7060928 
        _cons |   .1883665    .233478     0.81   0.420     -.269242     .645975 
------------------------------------------------------------------------------- 



• The khb method (shown in the next slide) shows that the decline is 
actually about four times as great, -.089. Again this is at least partly 
because the variance of y* becomes greater as more variables are 
added, causing coefficients to increase.

• Put another way, the effect of race in model 1, −.507, is adjusted 
upwards to -.5772, to reflect the increased variance of Y* as more 
variables are added.

• Putting it yet another way, the indirect effect of race is
underestimated if we don’t make the khb correction. It appears that
the indirect effect of race is only .024 when it is really .089. Without 
the KHB correction, you would underestimate the importance of the 
indirect effects race has by influencing other variables which in turn 
affect whether or not a person enjoys their job.



. khb logit jobenjoy race || gpa ses sex educjob educimportant luckimportant sbprevent 
 
Decomposition using the KHB-Method 
 
Model-Type:  logit                                 Number of obs     =    6731 
Variables of Interest: race                        Pseudo R2         =    0.08 
Z-variable(s): gpa ses sex educjob educimportant luckimportant sbprevent 
------------------------------------------------------------------------------ 
    jobenjoy | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
race         | 
     Reduced |  -.5727334     .10607    -5.40   0.000    -.7806269   -.3648399 
        Full |  -.4833004   .1095584    -4.41   0.000    -.6980309     -.26857 
        Diff |   -.089433   .0349898    -2.56   0.011    -.1580117   -.0208542 
------------------------------------------------------------------------------ 



Marginal Effects
• Both Mize, Doan, & Long (2019) and Karlson, Holm, & 

Breen (2012) argue that it may be better to look at 
changes in marginal effects across nested models, rather 
than changes in coefficients.

• KHB note that marginal effects have more intuitive 
appeal than do coefficients.

• MDL  further note that rescaling is not an issue with 
marginal effects

• The KHB and MDL methods differ though



The Mize/Doan/Long Approach: 
Report average marginal effects of variables

• In Example 1,
. use http://www3.nd.edu/~rwilliam/statafiles/standardized.dta, clear 
. qui logit  ybinary x1, nolog 
. qui margins, dydx(*) post 
. est store m1 
. qui logit  ybinary x2, nolog 
. qui margins, dydx(*) post 
. est store m2 
. qui logit  ybinary x1 x2, nolog 
. qui margins, dydx(*) post 
. est store m3 
. esttab m1 m2 m3, z 
 
------------------------------------------------------------ 
                      (1)             (2)             (3)    
                                                             
------------------------------------------------------------ 
x1                  0.132***                        0.139*** 
                  (18.74)                         (31.75)    
 
x2                                 0.0874***       0.0909*** 
                                  (18.77)         (27.49)    
------------------------------------------------------------ 
N                     500             500             500    
------------------------------------------------------------ 
z statistics in parentheses 



• The marginal effects changed far less than the coefficients did (although it 
may seem odd that they changed at all, given that x1 and x2 are 
uncorrelated).

• Mize, Doan, & Long (2019) demonstrate how to do formal tests of whether 
marginal effects significantly differ across nested models. (In this case, they 
don’t.)  See example 6.2 in  
https://journals.sagepub.com/doi/full/10.1177/0081175019852763

• The coding is a little complicated (Mize is working on do files to simplify it) 
but the code and data used in Mize’s paper is (as of February 26, 2022) at 
https://drive.google.com/drive/folders/18RS5C47b_ddGaRRXILfmxmfOB
41AyA7D

https://journals.sagepub.com/doi/full/10.1177/0081175019852763
https://drive.google.com/drive/folders/18RS5C47b_ddGaRRXILfmxmfOB41AyA7D


• The MDL approach includes output like the following. The main 
thing it adds to the margins commands just shown is a formal test of 
whether the change in marginal effects is statistically significant.

Average Discrete Changes for x1 and cross-model differences 
 
                     |   lincom        se    pvalue  
---------------------+------------------------------ 
ADC x1               |                               
             Model 1 |    0.132     0.007     0.000  
             Model 2 |    0.139     0.004     0.000  
---------------------+------------------------------ 
Diff in ADCs         |                               
             M1 - M2 |   -0.007     0.005     0.168 



• KHB provides what may be a better way to compare 
marginal effects across nested models. 

• They argue that estimating marginal effects model by 
model (like MDL do and we just did in Example 1) will 
give at least slightly erroneous results. They show how to 
correct for this.

• Using their ape (Average Partial Effect) option, even the 
small differences in marginal effects we saw in Example 1 
across nested models go away.



. khb logit ybinary x1 || x2, ape 
 
Decomposition using the APE-Method 
 
Model-Type:  logit                                 Number of obs     =     500 
Variables of Interest: x1                          Pseudo R2         =    0.64 
Z-variable(s): x2 
------------------------------------------------------------------------------ 
     ybinary | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
x1           | 
     Reduced |   .1386605   .0043668    31.75   0.000     .1301018    .1472192 
        Full |   .1386605   .0043668    31.75   0.000     .1301018    .1472192 
        Diff |   3.42e-10          .        .       .            .           . 
------------------------------------------------------------------------------ 
 Note: Standard errors of difference not known for APE method 



• Applying the MDL method to Example 2,

Average Discrete Changes for i.race and cross-model differences 
 
                     |   lincom        se    pvalue  
---------------------+------------------------------ 
ADC i.race           |                               
             Model 1 |   -0.071     0.016     0.000  
             Model 2 |   -0.061     0.016     0.000  
---------------------+------------------------------ 
Diff in ADCs         |                               
             M1 - M2 |   -0.010     0.006     0.103 



• Applying khb with the ape option to Example 2,
. khb logit jobenjoy i.race || gpa ses sex educjob educimportant luckimportant s 
> bprevent, ape 
 
Decomposition using the APE-Method 
 
Model-Type:  logit                                 Number of obs     =    6731 
Variables of Interest: i.race                      Pseudo R2         =    0.08 
Z-variable(s): gpa ses sex educjob educimportant luckimportant sbprevent 
------------------------------------------------------------------------------ 
    jobenjoy | Coefficient  Std. err.      z    P>|z|     [95% conf. interval] 
-------------+---------------------------------------------------------------- 
0.race       |  (base outcome) 
-------------+---------------------------------------------------------------- 
1.race       | 
     Reduced |  -.0742168   .0154848    -4.79   0.000    -.1045665    -.043867 
        Full |  -.0613298   .0154254    -3.98   0.000    -.0915631   -.0310966 
        Diff |  -.0128869          .        .       .            .           . 
------------------------------------------------------------------------------ 
 Note: Standard errors of difference not known for APE method 



• For Example 2 – Estimating marginal effectss the MDL way, the 
marginal effect of race declines by about .010 between nested 
models. 
▫ The change is NOT statistically significant at even the .10 level.

• However, using khb, the change is slightly larger, about .013.
▫ Unfortunately, khb does NOT provide a test of the statistical 

significance of the change.

• It may not matter that much whether or not you just estimate the 
marginal effects model by model like MDL do or if you use khb, as 
the differences seem to be minor in practice. (I’ve asked Mize & 
Long what they think.)



Summary
• When you estimate a series of nested models 

using logit or probit, comparisons of coefficients 
across models may be problematic, because Y* is 
scaled differently in each model.

• You may just want to not even present the 
results from nested models. Often people do so 
but ignore everything but the final model. So 
why waste space on something you aren’t using 
and which could mislead people?



• If you do want to present sequences of nested models and see how 
coefficients change  (e.g. you want to see how the effect of race declines as 
more variables are added to the model) you probably want to use the khb
method so results across models are directly comparable.

• Rather than focusing on how coefficients change, you may prefer to focus 
on how marginal effects change. This may be more intuitively meaningful.

• Mize, Doan, & Long (2019), as well as Karlson, Holm, and Breen (2012), 
have suggested ways to validly compare marginal effects across nested 
models. 
▫ I’m currently not sure which is best. According to KHB the MDL 

approach seems slightly off. On the other hand MDL provides a formal 
statistical test of the differences between marginal effects but KHB does 
not. The KHB software is currently much easier to use but easier-to-use 
software for MDL may be coming.  In any event, it may not matter that 
much as differences between the two approaches seem to be small.
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