From the Stata 11 manual, p. 712 (Stata 14.2 manual is similar):

`intreg` can fit models for data where each observation represents interval data, left-censored data, right-censored data, or point data. Regardless of the type of observation, the data should be stored in the dataset as interval data; that is, two dependent variables, `depvar1` and `depvar2`, are used to hold the endpoints of the interval. If the data are left-censored, the lower endpoint is $-\infty$ and is represented by a missing value, `.'`, or an extended missing value, `'.a, .b, . , .z'`, in `depvar1`. If the data are right-censored, the upper endpoint is $+\infty$ and is represented by a missing value, `.'` (or an extended missing value), in `depvar2`. Point data are represented by the two endpoints being equal.

<table>
<thead>
<tr>
<th>type of data</th>
<th>depvar1</th>
<th>depvar2</th>
</tr>
</thead>
<tbody>
<tr>
<td>point data</td>
<td>$a = [a, a]$</td>
<td>a</td>
</tr>
<tr>
<td>interval data</td>
<td>$[a, b]$</td>
<td>a</td>
</tr>
<tr>
<td>left-censored data</td>
<td>$(-\infty, b]$</td>
<td>.</td>
</tr>
<tr>
<td>right-censored data</td>
<td>$[a, +\infty)$</td>
<td>a</td>
</tr>
</tbody>
</table>

Truly missing values of the dependent variable must be represented by missing values in both `depvar1` and `depvar2`.

Example 1. As the Stata 11 manual notes, “Women were asked via a questionnaire to indicate a category for their yearly income from employment. The categories were less than 5,000, 5,001–10,000, … , 25,001–30,000, 30,001–40,000, 40,001–50,000, and more than 50,000. The wage categories are stored in the wagecat variable… A value of 5 for wagecat represents the category less than 5,000, a value of 10 represents 5,001–10,000, … , and a value of 51 represents greater than 50,000. To use intreg, we must create two variables, wage1 and wage2, containing the lower and upper endpoints of the wage categories.”

I think the Stata documentation makes the construction of the data set much more complicated than is necessary. Two `recode` commands can get you the upper and lower bounds of the intervals. Here is a simpler solution.
. webuse womenwage, clear
(Wages of women)
. tabl wagecat

-> tabulation of wagecat

<table>
<thead>
<tr>
<th>Wage</th>
<th>category</th>
<th>($1000s)</th>
<th>Freq.</th>
<th>Percent</th>
<th>Cum.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>14</td>
<td>2.87</td>
<td>2.87</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>83</td>
<td>17.01</td>
<td>19.88</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td></td>
<td>158</td>
<td>32.38</td>
<td>52.25</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
<td>107</td>
<td>21.93</td>
<td>74.18</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td></td>
<td>57</td>
<td>11.68</td>
<td>85.86</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
<td>30</td>
<td>6.15</td>
<td>92.01</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
<td>19</td>
<td>3.89</td>
<td>95.90</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td></td>
<td>14</td>
<td>2.87</td>
<td>98.77</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
<td></td>
<td>6</td>
<td>1.23</td>
<td>100.00</td>
</tr>
</tbody>
</table>

. recode wagecat (5=.) (10=5) (15=10) (20=15) (25=20) (30=25) (40=30) (50=40) (51=50), gen(wage1)
(488 differences between wagecat and wage1)

. recode wagecat(51=.), gen(wage2)
(6 differences between wagecat and wage2)
. sort age, stable
. list wage1 wage2 in 1/10

+---------------+
| wage1 wage2 |
+---------------+
1. | . 5 |
2. | 5 10 |
3. | 5 10 |
4. | 10 15 |
5. | . 5 |
6. | . 5 |
7. | . 5 |
8. | 5 10 |
9. | 5 10 |
10. | 5 10 |
+---------------+

. intreg wage1 wage2 c.age c.age#c.age i.nev_mar i.rural school tenure

Fitting constant-only model:
Iteration 0: log likelihood = -967.24956
Iteration 1: log likelihood = -967.1368
Iteration 2: log likelihood = -967.1368

Fitting full model:
Iteration 0: log likelihood = -856.65324
Iteration 1: log likelihood = -856.33294
Iteration 2: log likelihood = -856.33293
Interval regression

| | Coef. | Std. Err. | z | P>|z| | [95% Conf. Interval] |
|----------------|-------|-----------|-------|-------|----------------------|
| age | .7914438 | .4433604 | 1.79 | 0.074 | -.0775265 - 1.660414 |
| c.age#c.age | -.0132624 | .0073028 | -1.82 | 0.069 | -.0275757 - 0.0010509 |
| 1.nev_mar | -.2075022 | .8119581 | -0.26 | 0.798 | -1.798911 - 1.383906 |
| 1.rural | -3.043044 | .7757324 | -3.92 | 0.000 | -4.563452 - -1.522637 |
| school | 1.334721 | .1357873 | 9.83 | 0.000 | 1.068583 - 1.600859 |
| tenure | .8000664 | .1045077 | 7.66 | 0.000 | .5952351 - 1.004898 |
| _cons | -12.70238 | 6.367117 | -1.99 | 0.046 | -25.1817 - -2.230583 |
| /lnsigma | 1.987823 | .0346543 | 57.36 | 0.000 | 1.919902 - 2.055744 |
| sigma | 7.299626 | .2529634 | 6.82029 | 7.81265 |

Log likelihood = -856.33293
LR chi2(6) = 221.61
Prob > chi2 = 0.0000

Using margins with intreg. Given that intreg output looks much like the output from OLS regression, it is not surprising that margins can produce some similar looking output as it does after OLS.

* AMEs
 margins, dydx(*)

Average marginal effects
Number of obs = 488
Model VCE : OIM
Expression : Linear prediction, predict()
dy/dx w.r.t. : age 1.nev_mar 1.rural school tenure

<table>
<thead>
<tr>
<th></th>
<th>Delta-method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dy/dx</td>
</tr>
<tr>
<td>age</td>
<td>.0294002</td>
</tr>
<tr>
<td>1.nev_mar</td>
<td>-.2075022</td>
</tr>
<tr>
<td>1.rural</td>
<td>-3.043044</td>
</tr>
<tr>
<td>school</td>
<td>1.334721</td>
</tr>
<tr>
<td>tenure</td>
<td>.8000664</td>
</tr>
</tbody>
</table>

Note: dy/dx for factor levels is the discrete change from the base level.

Note that the AMEs for 4 of the 5 variables are identical to the estimated coefficients. Age is different because the model actually includes age and age^2 and the AME reflects this. This is the same thing that happens with an OLS regression. Both the coefficients and the AMEs reflect linear effects of the independent variables on the dependent variable; whereas with commands like logit the independent variables have nonlinear effects on the probability of the event occurring.
See `help intreg_postestimation` and `help intreg_postestimation##margins` for descriptions of other post-estimation commands and options for `margins` after running `intreg`.

Example 2. Here is a hypothetical example using `intreg`. `y` is a continuous var that ranges from about -70 to 88. It is normally distributed. `ycat` is a collapsed, ordinal version of `y`. `y1` and `y2` are the upper and lower bounds of the `y` intervals.

```stata
. use "https://www3.nd.edu/~rwilliam/xsoc73994/statafiles/intreg.dta", clear
(Hypothetical data for intreg example)
. des

Contains data from D:\Soc73994\Statafiles\intreg.dta
obs:         1,000                          Hypothetical data for intreg example
vars:             7                          6 Nov 2006 07:57
size:        32,000 (99.9% of memory free)
-------------------------------------------------------------------------------
storage  display     value
variable name   type   format      label      variable label
-------------------------------------------------------------------------------
y               float  %9.0g                  Continuous Y, ranges from -70.4 to 88.06
ycat            float  %10.0g      ycat       Y collapsed into 5 intervals
y1              float  %9.0g                  Lower bound of Y interval
y2              float  %9.0g                  Upper bound of Y interval
x1              float  %9.0g
x2              float  %9.0g
x3              float  %9.0g
-------------------------------------------------------------------------------
Sorted by:
. sum y

Variable |       Obs        Mean    Std. Dev.       Min        Max
-------------+--------------------------------------------------------
y |      1000    14.01144    25.05774  -70.36776    88.0509
. tab1 ycat
-> tabulation of ycat

Y collapsed |
into 5 |
intervals |          Freq. |     Percent |   Cum. |
-------------+----------------+-------------+--------|
LE 0 |          287 |       28.70 | 28.70  |
0 to 15 |          224 |       22.40 | 51.10  |
15 to 30 |          203 |       20.30 | 71.40  |
30 to 45 |          183 |       18.30 | 89.70  |
45 or more |          103 |       10.30 | 100.00 |
-------------+----------------+-------------+--------|
Total |      1,000 |       100.00 |
```
. * intreg with collapsed Y
. intreg y1 y2 x1 x2 x3

Fitting constant-only model:

Iteration 0: log likelihood = -1688.3436
Iteration 1: log likelihood = -1574.6026
Iteration 2: log likelihood = -1565.5637
Iteration 3: log likelihood = -1565.5603
Iteration 4: log likelihood = -1565.5603

Fitting full model:

Iteration 0: log likelihood = -1508.2373
Iteration 1: log likelihood = -1379.0543
Iteration 2: log likelihood = -1372.4038
Iteration 3: log likelihood = -1372.3949
Iteration 4: log likelihood = -1372.3949

Interval regression Number of obs = 1000
LR chi2(3) = 386.33
Log likelihood = -1372.3949 Prob > chi2 = 0.0000
--
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
x1 | 1.221547 .2544077 4.80 0.000 .7229169 1.720177
x2 | .8989353 .0799428 11.24 0.000 .7422503 1.05562
x3 | .9384835 .2191945 4.28 0.000 .5088702 1.368097
_cons | .0771196 1.451354 0.05 0.958 -2.767483 2.921722
-------------+--
/lnsigma | 3.003777 .0320312 93.78 0.000 2.940997 3.066557
-------------+--
sigma | 20.16155 .6457982 18.93472 21.46787
--
Observation summary: 287 left-censored observations
0 uncensored observations
103 right-censored observations
610 interval observations

. * OLS regression with original Y
. reg y x1 x2 x3

Source | SS df MS Number of obs = 1000
-------------+------------------------------ F(3, 996) = 188.94
Model | 227500.386 3 75833.4619 Prob > F = 0.0000
Residual | 399761.928 996 401.367397 R-squared = 0.3627
-------------+------------------------------ Adj R-squared = 0.3627
Total | 627262.313 999 627.890204 Root MSE = 20.034
--
| Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+--
y | 1.120216 .2308738 4.85 0.000 .6671616 1.573271
x1 | 1.120216 .2308738 4.85 0.000 .6671616 1.573271
x2 | .9312722 .0706904 13.17 0.000 .792553 1.069991
x3 | .8474134 .1983744 4.27 0.000 .4581337 1.236693
_cons | .196622 1.245274 0.16 0.875 -2.247039 2.640284
--
. * oprobit with collapsed Y
. oprobit ycat x1 x2 x3

Iteration 0: log likelihood = -1561.9813
Iteration 1: log likelihood = -1370.1889
Iteration 2: log likelihood = -1368.7383
Iteration 3: log likelihood = -1368.7378

Ordered probit regression Number of obs = 1000
LR chi2(3) = 386.49
Prob > chi2 = 0.0000
Log likelihood = -1368.7378 Pseudo R2 = 0.1237
--
 ycat | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+--
 x1 | .0604916 .0126526 4.78 0.000 .035693 .0852902
 x2 | .0445961 .004006 11.13 0.000 .0367445 .0524476
 x3 | .0466968 .0108907 4.29 0.000 .0253514 .0680421
-------------+--
 /cut1 | .0091044 .0732018 -.1343684 .1525773
 /cut2 | .7462179 .0751763 .5988751 .8935608
 /cut3 | 1.415098 .0809962 1.256348 1.573848
 /cut4 | 2.285878 .0952678 2.099156 2.472599
--

Several things to note about the above:

- The nice thing about `intreg`, as opposed to other ordinal methods, is that you interpret its parameters the same way you do the parameters from an OLS regression. The sigma that `intreg` reports is equivalent to the root mean square error (i.e. the standard error of the residuals) from an OLS regression.
- In this particular example, `intreg` does remarkably well. Its coefficients, standard errors, etc. are very similar to those produced by OLS regression on the un-collapsed `y` variable.
- Also, `intreg` produces almost the exact same log-likelihood as does `oprobit`, and also the same `z` values. (NOTE: You should compare the log-likelihoods rather than the model chi-squares when comparing `intreg` and `oprobit`.) But, the coefficients from `intreg` are much easier to interpret.
 - As the Stata manual points out, if `oprobit` fit much better, you might want to modify the `intreg` model (e.g. take logs of the interval points) or use `oprobit` or `ologit` or some other ordinal method instead.
- I caution, however, that the example is “rigged” in `intreg`’s favor, in that the assumptions it makes about normality are true in the constructed data set. You can’t always count on it working this well. As the Stata manual notes, `intreg` assumes normality.