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OPENING EXAMPLE. First we present the results for an OLS regression and a similar logistic 
regression. incbinary is a dichotomized version of income where the higher half of the cases are 
coded 1 and the bottom half are coded 0. The rest of the handout refers to these results often. 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. reg income educ 
 
      Source |       SS       df       MS              Number of obs =     500 
-------------+------------------------------           F(  1,   498) =  963.54 
       Model |  26490.0257     1  26490.0257           Prob > F      =  0.0000 
    Residual |  13691.2236   498  27.4924168           R-squared     =  0.6593 
-------------+------------------------------           Adj R-squared =  0.6586 
       Total |  40181.2493   499  80.5235456           Root MSE      =  5.2433 
 
------------------------------------------------------------------------------ 
      income |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   1.830332   .0589651    31.04   0.000     1.714481    1.946183 
       _cons |   3.702833   .8106362     4.57   0.000     2.110145    5.295522 
------------------------------------------------------------------------------ 
 
. fitstat 
 
 
                         |     regress  
-------------------------+------------- 
Log-likelihood           |              
                   Model |   -1536.945  
          Intercept-only |   -1806.106  
-------------------------+------------- 
Chi-square               |              
       Deviance (df=498) |    3073.890  
-------------------------+------------- 
R2                       |              
                      R2 |       0.659  
             Adjusted R2 |       0.659  
                McFadden |       0.149  
     McFadden (adjusted) |       0.148  
            Cox-Snell/ML |       0.659  
  Cragg-Uhler/Nagelkerke |       0.660  
-------------------------+------------- 
IC                       |              
                     AIC |    3077.890  
        AIC divided by N |       6.156  
              BIC (df=2) |    3086.319 
 

https://www.doi.org/10.4135/9781526421036946001
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. logit incbinary educ 
 
Iteration 0:   log likelihood = -346.57359   
[Other 3 iterations deleted] 
 
Logistic regression                               Number of obs   =        500 
                                                  LR chi2(1)      =      48.17 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -322.48937                       Pseudo R2       =     0.0695 
 
------------------------------------------------------------------------------ 
   incbinary |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
        educ |   .1702216   .0266265     6.39   0.000     .1180347    .2224086 
       _cons |  -2.245047   .3645915    -6.16   0.000    -2.959633    -1.53046 
------------------------------------------------------------------------------ 
 
. fitstat 
 
                         |       logit  
-------------------------+------------- 
Log-likelihood           |              
                   Model |    -322.489  
          Intercept-only |    -346.574  
-------------------------+------------- 
Chi-square               |              
       Deviance (df=498) |     644.979  
               LR (df=1) |      48.168  
                 p-value |       0.000  
-------------------------+------------- 
R2                       |              
                McFadden |       0.069  
     McFadden (adjusted) |       0.064  
      McKelvey & Zavoina |       0.122  
            Cox-Snell/ML |       0.092  
  Cragg-Uhler/Nagelkerke |       0.122  
                   Efron |       0.087  
                Tjur's D |       0.089  
                   Count |       0.660  
        Count (adjusted) |       0.320  
-------------------------+------------- 
IC                       |              
                     AIC |     648.979  
        AIC divided by N |       1.298  
              BIC (df=2) |     657.408  
-------------------------+------------- 
Variance of              |              
                       e |       3.290  
                  y-star |       3.749 

 
Translating fitstat into our earlier notation, Log-Likelihood Intercept Only is LL0, Log-Likelihood 
Model is LLM, Deviance (df=498)  is DEVM = -2*LLM, and LR (df=1) is L2 or else GM.  
 
R2 ANALOGS. Several Pseudo R2 measures are logical analogs to OLS R2 measures. McFadden’s 
R2 is perhaps the most popular Pseudo R2 of them all, and it is the one that Stata is reporting 
when it says Pseudo R2. However, fitstat also reports several over pseudo R^2 statistics. 
The formulas and rationale for each of these is presented in Appendix A. Personally, I just use 
McFadden all the time (Tjur’s R2 is also growing in popularity, but it only works with binary 
dependent variable, not ordinal), but you should be clear on what statistic you are using and you 
should also be aware of the other statistics in case you encounter them. 
 
INFORMATION MEASURES. A different approach to assessing the fit of a model and for 
comparing competing models is based on measures of information. As the multiplicity of Pseudo 
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R2 statistics suggests, there is considerable controversy as to which (if any) of these measures 
should be used. Further, the use of chi-square statistics as goodness of fit measures has been 
criticized.  

• When sample sizes are large, it is much easier to accept (or at least harder to reject) more 
complex models because the chi-square test statistics are designed to detect any departure 
between a model and observed data. That is, adding more terms to a model will always 
improve the fit, but with a large sample it becomes harder to distinguish a “real” 
improvement in fit from a substantively trivial one.  

• Likelihood-ratio tests therefore often lead to the rejection of acceptable models, and 
models become less parsimonious than they need to be. 

 
Therefore, as Long, Raftery and others note, information measures – in particular BIC and AIC – 
have become increasingly popular. Some key features of these measures: 
 

• BIC and AIC statistics are appropriate for many types of statistical methods, e.g. 
regress; they aren’t just limited to logistic regression. 

• The basic idea is to compare the relative plausibility of two models rather than to find the 
absolute deviation of observed data from a particular model. 

• Unlike many Pseudo R2 measures, the information measures have penalties for including 
variables that do not significantly improve fit. Particularly with large samples, the 
information measures can lead to more parsimonious but adequate models. 

• Another strength is that you can compare the fits of different models, even when the 
models are not nested. This is particularly useful when you have competing theories that 
are very different. For example, some theories of crime say that criminal behavior is 
deviant and linked to the offender’s psychological, social and family circumstances. 
Other theories say that criminal activity is a rational choice determined by its costs and 
benefits relative to other (legitimate) opportunities. 

• There are different formulas for these measures. It really doesn’t matter which you use, 
so long as you are consistent. The smaller the value of the statistic (or the more negative 
the value is) the better the fit of the model. 

 
We will primarily focus on the BIC statistic. The AIC (Akaike’s Information Criterion) is 
discussed in Appendix B. 
  
BIC. The Bayesian Information Criterion (BIC) assesses the overall fit of a model and allows the 
comparison of both nested and non-nested models. It is based on a Bayesian comparison of 
models. Suppose you have two models. Under the assumption that you have no prior preference 
for one model over the other, BIC identifies the model that is more likely to have generated the 
observed data.  
 
The formula for the BIC statistic reported by Stata (there are other formulas; see Appendix A) is 
 

PNDEVBIC MStata *)ln(+=  
 
where P is the number of parameters estimated (including the constant). 
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For the original OLS example above, 
 

319.30862*215.689.30732*)500ln(89.3073*)ln( =+=+=+= PNDEVBIC MStata  
 
For the original logistic regression example, 
 

408.6572*215.6979.6442*)500ln(979.644*)ln( =+=+=+= PNDEVBIC MStata  
 

The BIC (and also AIC) statistics reported by Stata use formulas that are simpler and perhaps 
easier to understand and interpret than are other formulas, so I can see why Stata uses them. I 
also like the fact that the Stata versions give positive values rather than negative values. 
Appendix C discusses these. Any of the BIC statistics can be used to compare models, regardless 
of whether they are nested or not. Further, it really doesn’t matter which one you use, since BIC1 
– BIC2 = BIC’1 – BIC’2 = BICStata1 - BICStata2 (where the subscripts refer to the two models you 
are comparing). Just be consistent with whichever one you use. 
 
The model with the smaller BIC or BIC’ or BICStata is preferred, i.e. if BIC1 – BIC2 < 0, model 1 
is preferred. If BIC1 – BIC2 > 0, the second model is prefered. Why? If you look at the formula 
for BICStata, ln(N) * P increases as you add more variables, while DEVM goes down. Therefore, 
in order for additional parameters to be worth adding to the model, they must produce at least 
enough of a decrease in DEVM to offset the increase in ln(N) * P. 
 
How much one model is preferred over the other depends on the magnitude of the difference. 
Raftery proposed the following guidelines: 
 

Absolute difference Evidence 

0-2 Weak 

2-6 Positive 

6-10 Strong 

>10 Very Strong 

 
NESTED MODELS. We’ll expand on our previous logistic regression example to illustrate the use 
of BIC and AIC comparisons (and also show how fitstat can make things a little easier when 
doing this). 
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. quietly logit incbinary educ 

. quietly fitstat, save 

. quietly logit incbinary educ jobexp i.black 

. fitstat, diff 
 
                         |     Current        Saved   Difference  
-------------------------+--------------------------------------- 
Log-likelihood           |                                        
                   Model |    -242.471     -322.489       80.019  
          Intercept-only |    -346.574     -346.574        0.000  
-------------------------+--------------------------------------- 
Chi-square               |                                        
       D (df=496/498/-2) |     484.941      644.979     -160.038  
           LR (df=3/1/2) |     208.206       48.168      160.038  
                 p-value |       0.000        0.000        0.000  
-------------------------+--------------------------------------- 
R2                       |                                        
                McFadden |       0.300        0.069        0.231  
     McFadden (adjusted) |       0.289        0.064        0.225  
      McKelvey & Zavoina |       0.523        0.122        0.400  
            Cox-Snell/ML |       0.341        0.092        0.249  
  Cragg-Uhler/Nagelkerke |       0.454        0.122        0.332  
                   Efron |       0.334        0.087        0.248  
                Tjur's D |       0.345        0.089        0.256  
                   Count |       0.840        0.660        0.180  
        Count (adjusted) |       0.680        0.320        0.360  
-------------------------+--------------------------------------- 
IC                       |                                        
                     AIC |     492.941      648.979     -156.038  
        AIC divided by N |       0.986        1.298       -0.312  
          BIC (df=4/2/2) |     509.799      657.408     -147.609  
-------------------------+--------------------------------------- 
Variance of              |                                        
                       e |       3.290        3.290        0.000  
                  y-star |       6.891        3.749        3.142  
 
Note: Likelihood-ratio test assumes saved model nested in current model. 
 
Difference of  147.609 in BIC provides very strong support for current model. 
 

As we see, there is very strong evidence for adding jobexp and black to the model. The AIC is 
smaller when you add the 2 variables 492.941 versus 648.979). The difference in the BICs is 
much bigger than 10 (509.79 versus 647.408, a difference of -147.609). And, of course, the LR 
chi-square contrast between the two is very large, 160.038 with 2 d.f. All the various pseudo R2 
measures go up (of course, most have to when you add variables, but McFadden’s Adj R2 and 
the Adj Count R2 go up too). 
 
fitstat is nice because it explicitly tells you which model is better supported (and how 
strongly) and computes all these differences between model statistics, but it isn’t essential. The 
lrtest command can give you the same information: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly logit incbinary educ 
. est store constrained 
. quietly logit incbinary educ jobexp i.black 
. est store unconstrained 
. lrtest constrained unconstrained, stats 
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Likelihood-ratio test                                 LR chi2(2)  =    160.04 
(Assumption: constrained nested in unconstrained)     Prob > chi2 =    0.0000 
 
Akaike's information criterion and Bayesian information criterion 
 
----------------------------------------------------------------------------- 
       Model |    Obs    ll(null)   ll(model)     df          AIC         BIC 
-------------+--------------------------------------------------------------- 
 constrained |    500   -346.5736   -322.4894      2     648.9787     657.408 
unconstrai~d |    500   -346.5736   -242.4705      4      492.941    509.7994 
----------------------------------------------------------------------------- 
               Note:  N=Obs used in calculating BIC; see [R] BIC note 

 
Also useful is the estat ic (information criteria) post-estimation command. 
  
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly logit incbinary educ jobexp i.black 
. estat ic 
 
Akaike's information criterion and Bayesian information criterion 
 
----------------------------------------------------------------------------- 
       Model |        Obs  ll(null)  ll(model)      df         AIC        BIC 
-------------+--------------------------------------------------------------- 
           . |        500 -346.5736  -242.4705       4     492.941   509.7994 
----------------------------------------------------------------------------- 
               Note: N=Obs used in calculating BIC; see [R] BIC note. 

 
ANOTHER EXAMPLE. Lets go back to our earlier example with grades. First we enter gpa and psi 
and then we enter tuce: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-logit.dta, clear 
. quietly logit grade gpa i.psi 
. quietly fitstat, save 
. quietly logit grade gpa i.psi tuce 



Scalar Measures of Fit: Pseudo R2 and Information Measures (AIC & BIC) Page 7 

. fitstat, diff 
 
                         |     Current        Saved   Difference  
-------------------------+--------------------------------------- 
Log-likelihood           |                                        
                   Model |     -12.890      -13.127        0.237  
          Intercept-only |     -20.592      -20.592        0.000  
-------------------------+--------------------------------------- 
Chi-square               |                                        
         D (df=28/29/-1) |      25.779       26.253       -0.474  
           LR (df=3/2/1) |      15.404       14.930        0.474  
                 p-value |       0.002        0.001        0.491  
-------------------------+--------------------------------------- 
R2                       |                                        
                McFadden |       0.374        0.363        0.012  
     McFadden (adjusted) |       0.180        0.217       -0.037  
      McKelvey & Zavoina |       0.544        0.520        0.024  
            Cox-Snell/ML |       0.382        0.373        0.009  
  Cragg-Uhler/Nagelkerke |       0.528        0.515        0.013  
                   Efron |       0.426        0.407        0.019  
                Tjur's D |       0.429        0.415        0.014  
                   Count |       0.813        0.813        0.000  
        Count (adjusted) |       0.455        0.455        0.000  
-------------------------+--------------------------------------- 
IC                       |                                        
                     AIC |      33.779       32.253        1.526  
        AIC divided by N |       1.056        1.008        0.048  
          BIC (df=4/3/1) |      39.642       36.650        2.992  
-------------------------+--------------------------------------- 
Variance of              |                                        
                       e |       3.290        3.290        0.000  
                  y-star |       7.210        6.856        0.354  
 
Note: Likelihood-ratio test assumes saved model nested in current model. 
 
Difference of    2.992 in BIC provides positive support for saved model. 
 

Most of the measures which can go down when variables are added (AIC, BIC, McFadden’s Adj 
R2) do go down, while the other Pseudo R2 measures go up very little. The LR chi-square 
contrast between the models is not significant. On a strictly empirical basis, the more 
parsimonious model that does not include TUCE is preferred. 
 
NON-NESTED MODELS. This isn’t the best example…but suppose we had two theories, one of 
which said that income was a function of characteristics determined at birth (e.g. race) and 
another theory that said income was a function of achieved characteristics, e.g. education and job 
experience. If we viewed these as dueling theories, we could do something like this: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly logit incbinary i.black 
. quietly fitstat, save 
. quietly logit incbinary educ jobexp 
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. fitstat, diff 
 
                         |     Current        Saved   Difference  
-------------------------+--------------------------------------- 
Log-likelihood           |                                        
                   Model |    -256.251     -301.713       45.462  
          Intercept-only |    -346.574     -346.574        0.000  
-------------------------+--------------------------------------- 
Chi-square               |                                        
       D (df=497/498/-1) |     512.503      603.426      -90.923  
           LR (df=2/1/1) |     180.644       89.721       90.923  
                 p-value |       0.000        0.000        0.000  
-------------------------+--------------------------------------- 
R2                       |                                        
                McFadden |       0.261        0.129        0.131  
     McFadden (adjusted) |       0.252        0.124        0.128  
      McKelvey & Zavoina |       0.442        0.248        0.194  
            Cox-Snell/ML |       0.303        0.164        0.139  
  Cragg-Uhler/Nagelkerke |       0.404        0.219        0.185  
                   Efron |       0.285        0.160        0.125  
                Tjur's D |       0.301        0.160        0.141  
                   Count |       0.660        0.660        0.000  
        Count (adjusted) |       0.320        0.320        0.000  
-------------------------+--------------------------------------- 
IC                       |                                        
                     AIC |     518.503      607.426      -88.923  
        AIC divided by N |       1.037        1.215       -0.178  
          BIC (df=3/2/1) |     531.147      615.855      -84.709  
-------------------------+--------------------------------------- 
Variance of              |                                        
                       e |       3.290        3.290        0.000  
                  y-star |       5.896        4.376        1.520  
 
Note: Likelihood-ratio test assumes saved model nested in current model. 
 
Difference of   84.709 in BIC provides very strong support for current model. 

 
Note that the model with education and job experience fits the data much better than the model 
with race only. It has smaller AIC and BIC values. Such comparisons can be very useful when 
the theories are very different and you can’t just compare them via a series of nested models. 
But, the same cases do need to be analyzed throughout. 
 
CONCLUSION. When presenting results, I think it is generally a good idea to present the 
McFadden’s Pseudo R^2 statistic; the model chi-square and degrees of freedom; and personally I 
like to see the BIC and/or AIC statistics included as well. 
 
Sources/Additional Reading. Long and Freese (2003, 2006, 2014), Long (1997) and Powers & Xie (2000, 2008) 
are major sources for these notes (the worked examples are mine but a lot of the text comes directly from their 
books.) Also, the 1995 volume of Sociological Methodology contains several chapters on Bayesian model selection 
that are used in this handout. The simple models presented here do not begin to do justice to the BIC measures. 
Adrian Raftery’s “Bayesian Model Selection in Social Research,” from Sociological Methodology, V. 25 (1995), pp. 
111-163, does a superb job of discussing BIC. He points out the problems with traditional methods of hypothesis 
testing and how the use of BIC can help to address them. The first few pages and the last few pages cover the 
highlights, but the entire article is highly recommended. The volume also included some interesting responses to 
Raftery; Robert Hauser in particular praises the use of BIC in model selection. 
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Appendix A: Pseudo R^2 Measures 
 
NOTE: Paul Allison has a good discussion of the merits of different measures at 
 
http://www.statisticalhorizons.com/r2logistic  

 
As noted earlier, McFadden’s Pseudo R^2 is the measure reported by Stata. But, there are several 
others, many of which are based on some so-called logical analog with the R^2 reported in OLS. 
We will use the results from the OLS and Logistic models reported on p. 1 of this handout. A 
key thing to realize is that the different formulas for OLS R^2 all give the same results, but the 
logical analogs for Pseudo R^2 do not. 
 
OLS Regression 
 

Logistic Regression 

1A. Percentage of Explained Variation: 
 

6593.
40181
1369111

6593.
40181
264902

=−=−=

===

SST
SSE

SST
SSRR

 

 
Note: Different authors use different notation. I use  
SSR = Regression Sum of Squares  
SSE = Error Sum of Squares  
SST = Total Sum of Squares 

1A. McFadden’s R2 (perhaps the most popular 
Pseudo R2 of them all, and the one that Stata is 
reporting when it says Pseudo R2): 
 

069.
148.693
979.64411

069.
574.346
489.32211

069.
574.346*2

168.48

0

0

0

2

=−=−=

=
−
−

−=−=

=
−−

==

Dev
Dev
LL
LL

Dev
GR

M

M

M

 

 1B. Efron’s R2 (another logical analog to 
Percentage of Explained Variation): 
 

087.
125

17.1141
)(
)ˆ(

1 2

2
2 =−=

−
−

−=
∑
∑

yy
y

R
i

ii π  

 
Note: You know the denominator will be 125 
(because the mean of incbinary is .5) but I had 
to do some additional runs to get the numerator, 
i.e. I computed the predicted probabilities ( iπ̂ ) 
and then computed the squared residuals. 
 

1C. Adjusted R2: 
 

6586.
5235456.80
4924168.271

1
)1/(
)/(12

=−=

−=
−
−

−=
MST
MSE

NSST
KNSSER

 

 
Where K = the # of parameters (including the 
intercept). This will not necessarily go up as more 
variables are added. 

1C. McFadden’s Adjusted R2: 
 

064.
574.346

2489.32211
0

2 =
−

−−
−=

−
−=

LL
KLLR M

 

Where K = the # of parameters (including the 
intercept). Like Adjusted R2 in OLS, this will 
not necessarily go up as more variables are 
added. 

http://www.statisticalhorizons.com/r2logistic


Scalar Measures of Fit: Pseudo R2 and Information Measures (AIC & BIC) Page 10 

2. Ratio of Var(Y) and Var( Ŷ ): 
 

6593.
524.80
437.271

)(
)(1

)(
)ˆ(2 =−=−==

YVar
Var

YVar
YVarR Yε  

2. McKelvey & Zavoina’s R2: 
 

122.
749.3
29.31

*)(
)(1 *2 =−=−=

YVar
VarR Yε  

3A. Transformation of the Likelihood Ratio: 
 

[ ]

[ ] [ ]
6593.3407.11

11

11

076644.1

500
2161.269500

2945.1536106.1806

2
2

02 0

=−=−=

−=−=

−=







−=

−

−+−

−

e
ee

e
L
LR NLLLL

N

M

M

 

 
I had to do the above simplifications to get my 
calculator to handle it without giving me errors! A 
computer can handle it better. Or, more simply, 
 

6593.3407.1)076646.1exp(1
)500/323.538exp(1)/exp(12

=−=−−=
−−=−−= NGR M  

3a. Maximum Likelihood R2 (SPSS calls this 
the Cox-Snell R2 and it is also called the 
geometric mean squared improvement per 
observation; You’ll also see Maddala’s name 
associated with this): 
 

092.908.1)096336.exp(1
)500/168.48exp(1)/exp(12

=−=−−=
−−=−−= NGR M  

 
NOTE: This isn’t just a logical analog to OLS; 
it is the exact same formula! 

 3B. Craig and Uhler’s R2 (which SPSS calls 
Nagelkerke R2! But either way it is an 
adjustment for the ML R2/ Cox-Snell R2, which 
makes it possible for the R2 to have a maximum 
value of 1; otherwise it maxes out at the 
denominator shown below): 
 

[ ] 122.
75.

0918448.

)574.346exp(1

)085.24exp(1

)574.346exp(1

)489.322exp(
)574.346exp(1

1

1

500
2

500
2

500
2

500
2

2
0

2

0

2

==
−−

−−
=

−−









−
−

−
=

−









−

=
N

N

M

L
L
L

R  

 
What should you use? Allison (http://www.statisticalhorizons.com/r2logistic) says “For years, 
I’ve been recommending the Cox and Snell R2 over the McFadden R2, but I’ve recently 
concluded that that was a mistake. I now believe that McFadden’s R2 is a better choice. 
However, I’ve also learned about another R2 that has good properties, a lot of intuitive appeal, 
and is easily calculated. At the moment, I like it better than the McFadden R2. But I’m not going 
to make a definite recommendation until I get more experience with it.” That R2 is discussed 
next. 
 
TJUR'S COEFFICIENT OF DISCRIMINATION. fitstat also produces a fairly new measure of 
pseudo R2, Tjur's Coefficient of Discrimination, D. (Others call it Tjur’s R2). SAS 
(http://support.sas.com/kb/39/109.html) describes it as follows: 
 

http://www.statisticalhorizons.com/r2logistic
http://support.sas.com/kb/39/109.html
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D is the difference in the average of the event probabilities between the groups of observations with observed events 
and nonevents.  

These are the properties of D according to Tjur (2009):  

Like R2, D ranges from 0 to 1. 

D ≥ 0. D = 0 if and only if all estimated probabilities are equal — the model has no discriminatory power. 

D ≤ 1. D = 1 if and only if the observed and estimated probabilities are equal for all observations — the model 
discriminates perfectly. 

D will not always increase when predictors are added to the model. 

Allison (http://www.statisticalhorizons.com/r2logistic) says several good things about Tjur’s 
measure (which he calls Tjur’s R2): 

It has a lot of intuitive appeal, its upper bound is 1.0, and it’s closely related to R2 definitions for linear models. It’s 
also easy to calculate.  

The definition is very simple. For each of the two categories of the dependent variable, calculate the mean of the 
predicted probabilities of an event. Then, take the [absolute value of the] difference between those two means. 
That’s it! 

The motivation should be clear. If a model makes good predictions, the cases with events should have high predicted 
values and the cases without events should have low predicted values.  

fitstat gave a value of .089 for the statistic. Here is how you can estimate it in our current 
example: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly logit incbinary educ 
. predict yhat 
(option pr assumed; Pr(incbinary)) 
 
. ttest yhat, by(incbinary) 
 
Two-sample t test with equal variances 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |     250    .4554406     .007504    .1186482    .4406613      .47022 
       1 |     250    .5445594    .0105659     .167062    .5237494    .5653694 
---------+-------------------------------------------------------------------- 
combined |     500          .5    .0067736    .1514629    .4866917    .5133083 
---------+-------------------------------------------------------------------- 
    diff |           -.0891188    .0129595               -.1145808   -.0636568 
------------------------------------------------------------------------------ 
    diff = mean(0) - mean(1)                                      t =  -6.8767 
Ho: diff = 0                                     degrees of freedom =      498 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000 
 

http://www.statisticalhorizons.com/r2logistic
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As we would expect/hope, those who had zeros on incbinary had a lower average predicted 
probability (.4554) than did those who had ones on incbinary (.5445). That isn’t a huge 
difference though, so Tjur’s D is only .089. In this case (but not always), if you add a few more 
variables to the model, D gets bigger: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly logit incbinary educ jobexp i.black 
. predict yhat 
(option pr assumed; Pr(incbinary)) 
. ttest yhat, by(incbinary) 
 
Two-sample t test with equal variances 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |     250    .3276272     .019042    .3010807    .2901233    .3651312 
       1 |     250    .6723728    .0105909     .167457    .6515136     .693232 
---------+-------------------------------------------------------------------- 
combined |     500          .5    .0133416    .2983265    .4737874    .5262126 
---------+-------------------------------------------------------------------- 
    diff |           -.3447456    .0217891               -.3875555   -.3019356 
------------------------------------------------------------------------------ 
    diff = mean(0) - mean(1)                                      t = -15.8219 
Ho: diff = 0                                     degrees of freedom =      498 
 
    Ha: diff < 0                 Ha: diff != 0                 Ha: diff > 0 
 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000 

 
Note that, if everybody in group 0 had a predicted probability of 0, and everybody in group 1 had 
a predicted probability of 1, the difference in the mean predicted probabilities would be 1 and 
Tjur’s R2 would equal 1. Conversely, if the average predicted probability was the same in both 
groups, Tjur’s R2 would equal 0. So, the better the model does at predicting the outcomes, the 
higher Tjur’s R2 will be. 
 
Allison also notes some possible limitations of Tjur’s R2: 

One possible objection to the Tjur R2 is that, unlike Cox-Snell and McFadden, it’s not based on the quantity being 
maximized, namely, the likelihood function.* As a result, it’s possible that adding a variable to the model could 
reduce the Tjur R2.  But Kvalseth (1985) argued that it’s actually preferable that R2 not be based on a particular 
estimation method. In that way, it can legitimately be used to compare predictive power for models that generate 
their predictions using very different methods. For example, one might want to compare predictions based on 
logistic regression with those based on a classification tree method.  

Another potential complaint is that the Tjur R2 cannot be easily generalized to ordinal or nominal logistic 
regression. For McFadden and Cox-Snell, the generalization is straightforward. 

 
PSEUDO R2’S USING OBSERVED VERSUS PREDICTED VALUES: COUNT R2 AND ADJUSTED 
COUNT R2. These are two other Pseudo R2 measures and are not based on an analog with OLS. 
To understand them, let’s first present a little additional information from our previous logistic 
regression (you can also give the command estat clas): 
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. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 

. quietly logit incbinary educ 

. lstat 
 
Logistic model for incbinary 
 
              -------- True -------- 
Classified |         D            ~D  |      Total 
-----------+--------------------------+----------- 
     +     |       170            90  |        260 
     -     |        80           160  |        240 
-----------+--------------------------+----------- 
   Total   |       250           250  |        500 
 

In the table, the diagonal cases are the ones that were correctly classified, i.e. (170 + 160) = 330 
were correctly classified, i.e. 66%. Thus, the Count R2 is 
 

66.
500
330

Cases ofNumber  Total
ClassifiedCorrectly Number RCount 2 ===  

 
Note, however, that that number may not mean a whole lot. You can always correctly predict at 
least 50% of the cases by choosing the outcome category with the largest percentage of observed 
cases, e.g. if 60% of the cases are successes you will be correct 60% of the time if you pick all 
the cases to be a success (better yet, if 90% of the cases are failures, you will be right 90% of the 
time by picking everyone to fail!). The Adjusted Count R2 adjusts for this by subtracting the 
largest row marginal from both the denominator and the numerator. In this case, there are an 
even number of successes and failures, 250; but if instead there had been 300 successes and 200 
failures, you would subtract 300 from numerator and denominator. If there had been 100 
successes and 400 failures you would subtract 400 from both the numerator and denominator. 
 

32.
250500
250330

Failures) # Observed Successes, # edMax(Observ-Cases of # Total
Failures) # Observed Successes, # edMax(Observ-ClassifiedCorrectly  #RCount  Adj 2 =

−
−

==  
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Appendix B: Akaike’s Information Criterion (AIC) 
 
Akaike’s Information Criterion (AIC) is defined as 
 

2MAIC Dev P= +  
 
Where P = the number of parameters in the model (including the intercept). In the OLS example 
above, 
 

2 3073.89 4 3077.89MAIC Dev P= + = + =  
 
and in the logistic regression example, 
 

2 644.979 4 648.979MAIC Dev P= + = + =  
 
The smaller the deviance, the better the model fits. As you add more parameters, the fit will 
improve; adding 2P to the deviance is a penalty for increasing the number of parameters. Since 
the number of observations affects the deviance, we divide by N to obtain the per-observation 
contribution to the adjusted deviance. All else being equal, smaller values suggest a better fitting 
model. 
 
AIC is often used to compare models across different samples or to compare non-nested models 
that cannot be compared with the LR test. All else being equal, the model with the smaller AIC is 
considered the better fitting model. 
 
Some authors prefer to report AIC/N. You can then compare AIC statistics across samples even 
when the sample sizes differ. fitstat reports these alternative AICs as AIC and AIC/N. AIC 
is also the AIC statistic reported by Stata. The formula can be written simply as 
 

2 644.979 4/ 1.298
500 500
MDev PAIC N + +

= = =  
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Appendix C: Alternative Formulas for BIC 
 
There are a couple of different formulas for BIC. Again, the formula Stata uses is 
 

PNDEVBIC MStata *)ln(+=  
 
where P is the number of parameters estimated (including the constant). 
 
I like this formula because it produces positive values which makes it easier to interpret. But, it 
doesn’t matter that much which formula you use so long as you are clear and consistent. When 
comparing two models, the differences in their BIC values will be the same no matter which 
formula you use. If you are having trouble replicating previous work it may be because a 
different formula was used. Note too that even within Stata different formulas sometimes get 
used, e.g. the user-written bicdrop1 uses different formulas (i.e. the ones below) than BICStata. 
 
For example, one popular alternative (which fitstat call BIC (deviance) because it uses the 
deviance in the calculation; but others will just call it BIC) is 
 

lnDev M MBIC Dev df N= −  
 
where the df = N - # of parameters (including the intercept). In the OLS example above, 
 

ln 3073.890 498*ln 500 3073.89 498*6.2146 20.985Dev M MBIC Dev df N= − = − = − = −  
 

and for the logistic regression 
 

ln 644.979 498*ln 500 644.979 498*6.2146 2449.896Dev M MBIC Dev df N= − = − = − = −  
 

If BICDev is positive, the saturated model (i.e. the model with one parameter for every case; the 
BICDev for a saturated model will equal 0) is preferred (i.e. the more complex model is better). 
When BICDev is negative, the current model is preferred. The more negative the BICDev, the 
better the fit. 
 
Another version of BIC is called BIC’ and is based on the Model Chi-Square, with the degrees of 
freedom equal to the number of regressors (intercept not included). 
 

' ' lnM MBIC G df N= − +  
 
For the OLS example above, 
 

' ' ln 538.323 1*ln 500 538.323 6.2146 532.108M MBIC G df N= − + = − + = − + = −  
 
For the logistic regression example, 
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' ' ln 48.168 1*ln 500 48.168 6.2146 41.953M MBIC G df N= − + = − + = − + = −  
 
If BIC’ is positive, the null model is preferred (i.e. the model with only the constant; it will have 
a BIC’ value of 0). A positive BIC’ implies that your model has too many variables in it. If BIC’ 
is negative, then the current model is preferred over the null model (and the more negative BIC’ 
is, the better). Basically, BIC’ tests whether the model fits the data sufficiently well enough to 
justify the number of parameters that are used. 
 
You can get all three of the different BIC measures via the following: 
 
. use https://www3.nd.edu/~rwilliam/statafiles/glm-reg, clear 
. quietly reg income educ 
. fitstat, ic 
 
                         |     regress  
-------------------------+------------- 
AIC                      |              
                     AIC |    3077.890  
          (divided by N) |       6.156  
-------------------------+------------- 
BIC                      |              
              BIC (df=2) |    3086.319  
 BIC (based on deviance) |     -20.985  
    BIC' (based on LRX2) |    -532.108 
 
. quietly logit incbinary educ 
. fitstat, ic 
 
 
                         |       logit  
-------------------------+------------- 
AIC                      |              
                     AIC |     648.979  
          (divided by N) |       1.298  
-------------------------+------------- 
BIC                      |              
              BIC (df=2) |     657.408  
 BIC (based on deviance) |   -2449.896  
    BIC' (based on LRX2) |     -41.954 
 

The first BIC statistic is the BIC reported by Stata while the other two BICs use the formulas 
presented in this appendix. 
 
To confirm that it doesn’t matter which BIC formula you use so long as you always use the same 
one, 
 
. quietly logit incbinary i.black 
. quietly fitstat, save ic 
. quietly logit incbinary educ jobexp 
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. fitstat, diff ic 
 
                         |     Current        Saved   Difference  
-------------------------+--------------------------------------- 
AIC                      |                                        
                     AIC |     518.503      607.426      -88.923  
          (divided by N) |       1.037        1.215       -0.178  
-------------------------+--------------------------------------- 
BIC                      |                                        
          BIC (df=3/2/1) |     531.147      615.855      -84.709  
 BIC (based on deviance) |   -2576.157    -2491.449      -84.709  
    BIC' (based on LRX2) |    -168.215      -83.507      -84.709  
 
Difference of   84.709 in BIC provides very strong support for current model. 
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