Prelude to Comparing Coefficients Between Nested Models

Richard Williams, University of Notre Dame, https://www3.nd.edu/~rwilliam/ Last revised October 10, 2024

Following are results of two bivariate and one multivariate logistic regressions using a data set I constructed:

<pre>. use https://www3.nd.edu/~rwilliam/statafiles/standardized.dta, clear . logit ybinary x1, nolog</pre>						
Logit estimates				Number of obs = LR chi2(1) = Prob > chi2 =		500 161.77 0.0000
Log likelihood =	-265.54468			Pseudo	o R2 =	0.2335
ybinary				P> z	[95% Conf.	Interval]
					.5958668 2605593	.8818687 .154604
. logit ybinary	, x2, nolog					
Logit estimates				Number of obs = 500 LR chi2(1) = 160.35 Prob > chi2 = 0.0000 Pseudo R2 = 0.2314		
Log likelihood =	-266.25298			Pseudo	o R2 =	0.2314
ybinary	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x2	.4886751	.0482208	10.13	0.000	.3941641 2797986	
. logit ybinary x1 x2, nolog						
Logit estimates				Number LR ch	r of obs = i2(2) = chi2 =	500 443.39 0.0000
Log likelihood = -124.73508				Pseudo	> chi2 = 0 R2 =	0.6399
ybinary	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
x1 x2	1.78923 1.173144	.1823005 .1207712	9.81 9.71	0.000	1.431927 .9364369 5333532	1.409851

Usually, when we add variables to a model (at least in OLS regression), the effects of variables added earlier go down. However, in this case, we see that the coefficients for x1 and x2 increase (seemingly) dramatically when both variables are in the model, i.e. in the separate bivariate regressions the effects of x1 and x2 are .7388678 and .4886751, but in the multivariate regressions the effects are 1.78923 and 1.173144, more than twice as large as before. This leads to two questions:

- 1. If we saw something similar in an OLS regression, what would we suspect was going on? In other words, in an OLS regression, what can cause coefficients to get bigger rather than smaller as more variables are added?
- 2. In a logistic regression, why might such an interpretation be totally wrong? ©